26 research outputs found

    A deletion of FGFR2 creating a chimeric IIIb/IIIc exon in a child with Apert syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Signalling by fibroblast growth factor receptor type 2 (FGFR2) normally involves a tissue-specific alternative splice choice between two exons (IIIb and IIIc), which generates two receptor isoforms (FGFR2b and FGFR2c respectively) with differing repertoires of FGF-binding specificity. Here we describe a unique chimeric IIIb/c exon in a patient with Apert syndrome, generated by a non-allelic homologous recombination event.</p> <p>Case Presentation</p> <p>We present a child with Apert syndrome in whom routine genetic testing had excluded the <it>FGFR2 </it>missense mutations commonly associated with this disorder. The patient was found to harbour a heterozygous 1372 bp deletion between <it>FGFR2 </it>exons IIIb and IIIc, apparently originating from recombination between 13 bp of identical DNA sequence present in both exons. The rearrangement was not present in the unaffected parents.</p> <p>Conclusions</p> <p>Based on the known pathogenesis of Apert syndrome, the chimeric FGFR2 protein is predicted to act in a dominant gain-of-function manner. This is likely to result from its expression in mesenchymal tissues, where retention of most of the residues essential for FGFR2b binding activity would result in autocrine activation. This report adds to the repertoire of rare cases of Apert syndrome for which a pathogenesis based on atypical <it>FGFR2 </it>rearrangements can be demonstrated.</p

    Medulloblastoma and ependymoma cells display levels of 5-carboxylcytosine and elevated TET1 expression

    Get PDF
    Background Alteration of DNA methylation (5-methylcytosine, 5mC) patterns represents one of the causes of tumorigenesis and cancer progression. Tet proteins can oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine and 5-carboxylcytosine (5caC). Although the roles of these oxidised forms of 5mC (oxi-mCs) in cancer pathogenesis are still largely unknown, there are indications that they may be involved in the mechanisms of malignant transformation. Thus, reduction of 5hmC content represents an epigenetic hallmark of human tumours and, according to our recent report; 5caC is enriched in a proportion of breast cancers and gliomas. Nevertheless, the distribution of oxi-mCs in paediatric brain tumours has not been assessed. Findings Here we analyse the global levels and spatial distribution of 5hmC and 5caC in 4 brain tumour cell lines derived from paediatric sonic hedgehog (SHH) pathway activated medulloblastomas (Daoy and UW228-3) and ependymomas (BXD-1425EPN and DKFZEP1NS). We show that, unlike HeLa cells, the paediatric tumour cell lines possess both 5hmC and 5caC at immunochemically detectable levels, and demonstrate that both modifications display high degrees of spatial overlap in the nuclei of medulloblastomas and ependymomas. Moreover, although 5hmC levels are comparable in the 4 brain tumour cell lines, 5caC staining intensities differ dramatically between them with highest levels of this mark in a subpopulation of DKFZ-EP1NS cells. Remarkably, the 5caC enrichment does not correlate with 5hmC levels and is not associated with alterations in Thymine DNA Glycosylase (TDG) expression in SHH medulloblastoma and ependymoma cell lines, but corresponds to elevated levels of TET1 transcript in UW228-3 and DKFZ-EP1NS cells. Conclusions We demonstrate that both 5caC enrichment and elevated TET1 expression are observed in SHH medulloblastomas and ependymomas. Our results suggest that increased Tet-dependent 5mC oxidation may represent one of the epigenetic signatures of cancers with neural stem cell origin and, thus, may contribute to development of novel approaches for diagnosis and therapy of the brain tumours

    Quasifree (p, 2p) Reactions on Oxygen Isotopes: Observation of Isospin Independence of the Reduced Single-Particle Strength

    Get PDF
    Quasifree one-proton knockout reactions have been employed in inverse kinematics for a systematic study of the structure of stable and exotic oxygen isotopes at the R3B/LAND setup with incident beam energies in the range of 300-450 MeV/u. The oxygen isotopic chain offers a large variation of separation energies that allows for a quantitative understanding of single-particle strength with changing isospin asymmetry. Quasifree knockout reactions provide a complementary approach to intermediate-energy one-nucleon removal reactions. Inclusive cross sections for quasifree knockout reactions of the type OA(p,2p)NA-1 have been determined and compared to calculations based on the eikonal reaction theory. The reduction factors for the single-particle strength with respect to the independent-particle model were obtained and compared to state-of-the-art ab initio predictions. The results do not show any significant dependence on proton-neutron asymmetry

    Quasi-free (p,pN) scattering of light neutron-rich nuclei around N = 14

    Get PDF
    Background: For many years, quasifree scattering reactions in direct kinematics have been extensively used to study the structure of stable nuclei, demonstrating the potential of this approach. The RB3 collaboration has performed a pilot experiment to study quasifree scattering reactions in inverse kinematics for a stable C12 beam. The results from that experiment constitute the first quasifree scattering results in inverse and complete kinematics. This technique has lately been extended to exotic beams to investigate the evolution of shell structure, which has attracted much interest due to changes in shell structure if the number of protons or neutrons is varied. Purpose: In this work we investigate for the first time the quasifree scattering reactions (p,pn) and (p,2p) simultaneously for the same projectile in inverse and complete kinematics for radioactive beams with the aim to study the evolution of single-particle properties from N=14 to N=15. Method: The structure of the projectiles O23, O22, and N21 has been studied simultaneously via (p,pn) and (p,2p) quasifree knockout reactions in complete inverse kinematics, allowing the investigation of proton and neutron structure at the same time. The experimental data were collected at the R3B-LAND setup at GSI at beam energies of around 400 MeV/u. Two key observables have been studied to shed light on the structure of those nuclei: the inclusive cross sections and the corresponding momentum distributions. Conclusions: The knockout reactions (p,pn) and (p,2p) with radioactive beams in inverse kinematics have provided important and complementary information for the study of shell evolution and structure. For the (p,pn) channels, indications of a change in the structure of these nuclei moving from N=14 to N=15 have been observed, i.e., from the 0d5/2 shell to the 1s1/2. This supports previous observations of a subshell closure at N=14 for neutron-rich oxygen isotopes and its weakening for the nitrogen isotopes

    Effective proton-neutron interaction near the drip line from unbound states in 25,26 F

    Get PDF
    Background: Odd-odd nuclei, around doubly closed shells, have been extensively used to study proton-neutron interactions. However, the evolution of these interactions as a function of the binding energy, ultimately when nuclei become unbound, is poorly known. The F26 nucleus, composed of a deeply bound π0d5/2 proton and an unbound ν0d3/2 neutron on top of an O24 core, is particularly adapted for this purpose. The coupling of this proton and neutron results in a Jπ=11+-41+ multiplet, whose energies must be determined to study the influence of the proximity of the continuum on the corresponding proton-neutron interaction. The Jπ=11+,21+,41+ bound states have been determined, and only a clear identification of the Jπ=31+ is missing. Purpose: We wish to complete the study of the Jπ=11+-41+ multiplet in F26, by studying the energy and width of the Jπ=31+ unbound state. The method was first validated by the study of unbound states in F25, for which resonances were already observed in a previous experiment. Method: Radioactive beams of Ne26 and Ne27, produced at about 440AMeV by the fragment separator at the GSI facility were used to populate unbound states in F25 and F26 via one-proton knockout reactions on a CH2 target, located at the object focal point of the R3B/LAND setup. The detection of emitted γ rays and neutrons, added to the reconstruction of the momentum vector of the A-1 nuclei, allowed the determination of the energy of three unbound states in F25 and two in F26. Results: Based on its width and decay properties, the first unbound state in F25, at the relative energy of 49(9) keV, is proposed to be a Jπ=1/2- arising from a p1/2 proton-hole state. In F26, the first resonance at 323(33) keV is proposed to be the Jπ=31+ member of the Jπ=11+-41+ multiplet. Energies of observed states in F25,26 have been compared to calculations using the independent-particle shell model, a phenomenological shell model, and the ab initio valence-space in-medium similarity renormalization group method. Conclusions: The deduced effective proton-neutron interaction is weakened by about 30-40% in comparison to the models, pointing to the need for implementing the role of the continuum in theoretical descriptions or to a wrong determination of the atomic mass of F26

    Systematic investigation of projectile fragmentation using beams of unstable B and C isotopes

    Get PDF
    Background: Models describing nuclear fragmentation and fragmentation fission deliver important input for planning nuclear physics experiments and future radioactive ion beam facilities. These models are usually benchmarked against data from stable beam experiments. In the future, two-step fragmentation reactions with exotic nuclei as stepping stones are a promising tool for reaching the most neutron-rich nuclei, creating a need for models to describe also these reactions. Purpose: We want to extend the presently available data on fragmentation reactions towards the light exotic region on the nuclear chart. Furthermore, we want to improve the understanding of projectile fragmentation especially for unstable isotopes. Method: We have measured projectile fragments from C10,12-18 and B10-15 isotopes colliding with a carbon target. These measurements were all performed within one experiment, which gives rise to a very consistent data set. We compare our data to model calculations. Results: One-proton removal cross sections with different final neutron numbers (1pxn) for relativistic C10,12-18 and B10-15 isotopes impinging on a carbon target. Comparing model calculations to the data, we find that the epax code is not able to describe the data satisfactorily. Using abrabla07 on the other hand, we find that the average excitation energy per abraded nucleon needs to be decreased from 27 MeV to 8.1 MeV. With that decrease abrabla07 describes the data surprisingly well. Conclusions: Extending the available data towards light unstable nuclei with a consistent set of new data has allowed a systematic investigation of the role of the excitation energy induced in projectile fragmentation. Most striking is the apparent mass dependence of the average excitation energy per abraded nucleon. Nevertheless, this parameter, which has been related to final-state interactions, requires further study

    Structure of 13Be studied in proton knockout from 14B

    Get PDF
    International audienceThe neutron-unbound isotope Be13 has been studied in several experiments using different reactions, different projectile energies, and different experimental setups. There is, however, no real consensus in the interpretation of the data, in particular concerning the structure of the low-lying excited states. Gathering new experimental information, which may reveal the Be13 structure, is a challenge, particularly in light of its bridging role between Be12, where the N=8 neutron shell breaks down, and the Borromean halo nucleus Be14. The purpose of the present study is to investigate the role of bound excited states in the reaction product Be12 after proton knockout from B14, by measuring coincidences between Be12, neutrons, and γ rays originating from de-excitation of states fed by neutron decay of Be13. The Be13 isotopes were produced in proton knockout from a 400 MeV/nucleon B14 beam impinging on a CH2 target. The Be12-n relative-energy spectrum dσ/dEfn was obtained from coincidences between Be12(g.s.) and a neutron, and also as threefold coincidences by adding γ rays, from the de-excitation of excited states in Be12. Neutron decay from the first 5/2+ state in Be13 to the 2+ state in Be12  at 2.11 MeV is confirmed. An energy independence of the proton-knockout mechanism is found from a comparison with data taken with a 35 MeV/nucleon B14 beam. A low-lying p-wave resonance in Be13(1/2−) is confirmed by comparing proton- and neutron-knockout data from B14 and Be14
    corecore