
Ramsawhook, Ashley and Lewis, Lara and Coyle, Beth 
and Ruzov, Alexey (2017) Medulloblastoma and 
ependymoma cells display levels of 5-carboxylcytosine 
and elevated TET1 expression. Clinical Epigenetics, 9 
(18). pp. 1-9. ISSN 1868-7083 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/39834/8/art_10.1186_s13148-016-0306-2%2039834.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

This article is made available under the Creative Commons Attribution licence and may be 
reused according to the conditions of the licence.  For more details see: 
http://creativecommons.org/licenses/by/2.5/

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk


SHORT REPORT Open Access

Medulloblastoma and ependymoma
cells display increased levels of 5-
carboxylcytosine and elevated TET1
expression
Ashley Ramsawhook1, Lara Lewis1, Beth Coyle2* and Alexey Ruzov1*

Abstract

Background: Alteration of DNA methylation (5-methylcytosine, 5mC) patterns represents one of the causes of
tumorigenesis and cancer progression. Tet proteins can oxidise 5mC to 5-hydroxymethylcytosine (5hmC), 5-
formylcytosine and 5-carboxylcytosine (5caC). Although the roles of these oxidised forms of 5mC (oxi-mCs) in cancer
pathogenesis are still largely unknown, there are indications that they may be involved in the mechanisms of malignant
transformation. Thus, reduction of 5hmC content represents an epigenetic hallmark of human tumours, and according
to our recent report, 5caC is enriched in a proportion of breast cancers and gliomas. Nevertheless, the distribution of
oxi-mCs in paediatric brain tumours has not been assessed.

Findings: Here, we analyse the global levels and spatial distribution of 5hmC and 5caC in four brain tumour cell lines
derived from paediatric sonic hedgehog (SHH) pathway-activated medulloblastomas (Daoy and UW228-3) and
ependymomas (BXD-1425EPN and DKFZ-EP1NS). We show that, unlike HeLa cells, the paediatric tumour cell lines possess
both 5hmC and 5caC at immunochemically detectable levels and demonstrate that both modifications display high
degrees of spatial overlap in the nuclei of medulloblastomas and ependymomas. Moreover, although 5hmC levels are
comparable in the four brain tumour cell lines, 5caC staining intensities differ dramatically between them with highest
levels of this mark in a subpopulation of DKFZ-EP1NS cells. Remarkably, the 5caC enrichment does not correlate with
5hmC levels and is not associated with alterations in thymine DNA glycosylase (TDG) expression in SHH medulloblastoma
and ependymoma cell lines but corresponds to elevated levels of TET1 transcript in UW228-3 and DKFZ-EP1NS cells.

Conclusions: We demonstrate that both 5caC enrichment and elevated TET1 expression are observed in SHH
medulloblastomas and ependymomas. Our results suggest that increased Tet-dependent 5mC oxidation may
represent one of the epigenetic signatures of cancers with neural stem cell origin and, thus, may contribute
to development of novel approaches for diagnosis and therapy of the brain tumours.
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Findings
Background
Alterations of both DNA methylation (5-methylcytosine,
5mC) patterns and chromatin structure are anticipated
to be of key importance for the initiation and progres-
sion of human cancer [1–3]. Genomic distribution of
5mC undergoes dramatic transformation during tumori-
genesis resulting in aberrant patterns of gene expression
due to hypermethylation of promoters of tumour sup-
pressor genes and to hypomethylation of oncogene’s
promoters [3, 4]. Thus, malignant transformation is de-
termined by both de novo methylation and demethyla-
tion of specific genomic regions [4, 5].
The molecular mechanisms of active DNA demethyla-

tion were largely obscure until a number of studies dem-
onstrated that Tet (ten-eleven translocation) proteins
(Tet1/2/3) can oxidise 5mC to 5-hydroxymethylcytosine
(5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine
(5caC) [6–8]. Remarkably, apart from their potential roles
in the regulation of transcription, these oxidised forms of
5mC (oxi-mCs) may also serve as intermediates in active
and passive demethylation mechanisms [9–12]. Thus, both
5fC and 5caC can be recognised and excised from DNA
by thymine DNA glycosylase (TDG) followed by incorpor-
ation of non-modified cytosine into the generated abasic
site by the components of base-excision repair (BER) path-
way [7, 8, 11]. Despite the putative involvement of the oxi-
mCs in the mechanisms of DNA demethylation, the roles
of these epigenetic modifications in cancer initiation and
progression are currently mostly unclear [13]. However,
there is a growing body of experimental evidence suggest-
ing that both oxi-mCs and Tet proteins are important for
the processes of malignant transformation [5, 13]. Thus, it
is currently widely acknowledged that depletion of 5hmC
represents an epigenetic hallmark of a number of human
cancers [14–17]. In addition, in our recent study, we, ra-
ther unexpectedly, found that 5caC is enriched in a pro-
portion of breast cancers and gliomas [18].
Potential biological functions of Tet-dependent 5mC

oxidation have been extensively studied in adult brain
tumours during several recent years [19–21]. However,
neither the oxi-mCs content nor the expression levels of
Tet proteins have been assessed in paediatric brain tu-
mours. Nevertheless, a range of tumour suppressors and
other genes involved in cancer pathogenesis are aber-
rantly methylated in both paediatric medulloblastomas
and ependymomas implying that DNA (de)methylation
plays important role in initiation and/or progression of
these types of cancer [22].
In the present study, we aimed to determine the global

levels and nuclear distribution of oxi-mCs as well as the
expression of TET1/2/3 and TDG transcripts in tumour
cell lines derived from paediatric medulloblastomas and
ependymomas.

Methods
Cell lines and cell culture
BXD-1425EPN [23], DKFZ-EP1NS [24] and HeLa cells
were cultured in Dulbecco’s modified Eagles medium
(DMEM) (Gibco, Life Technologies) supplemented with
10% foetal bovine serum and 1% penicillin/streptomycin.
Daoy [25] cells were cultured in MEM/EBSS supple-
mented with 10% heat-inactivated foetal bovine serum,
sodium pyruvate, non-essential amino acids, 2 mL glu-
tamine, 100 g/mL streptomycin and 100 U/mL penicil-
lin. The UW228-3 [26] cell line was cultured in DMEM/
F12 supplemented with 10% heat-inactivated foetal
bovine serum, 2 mL glutamine, 100 g/mL streptomycin
and 100 U/mL penicillin.

Immunocytochemistry, immunohistochemistry, confocal
microscopy, quantification of the signal intensities and
statistical analysis
Immunochemistry, confocal microscopy and generation
of 2.5XD intensity plots and intensity profiles were per-
formed as previously described [27]. Anti-5hmC mouse
monoclonal (Active Motif, 1:5000 dilution) and anti-
5caC rabbit polyclonal (Active Motif, 1:500 dilution)
primary antibodies were used for immunochemistry.
Peroxidase-conjugated anti-rabbit secondary antibody
(Dako) and the tyramide signal enhancement system
(PerkinElmer, 1:200 dilution, 2 min of incubation with
tyramide) were employed for 5caC detection. 5hmC was
visualised using 555-conjugated secondary antibody
(Alexafluor). Control staining without primary antibody
produced no detectable signal. Paraffin-embedded
formaldehyde-fixed 12.5 dpc murine embryonic tissue
was used for 5caC/5hmC immunostaining of embryonic
brain cells. For quantification of the 5hmC and 5caC sig-
nal intensities in multiple cells, mean values of the aver-
age intensities of eight intensity profiles were calculated
for each cell line or, for DKFZ-EP1NS cells, for the pop-
ulations of 5caC-positive and 5caC-negative cells. Statis-
tical significance was determined by two-tailed t test
after assessing the variance with F test.

Gene expression analysis
Expression of TET1/2/3 and TDG transcripts was ana-
lysed by quantitative PCR according to standard proce-
dures. Gene expression was normalised by comparison to
levels of GAPDH gene expression. The following primers
were used:

TET1: CTTGGTATGAGTGGGAGTG and
GAGCATTAAAGGTAGCAATTG;
TET2: GCAAGATCTTCTTCACAG and
GCATGGTTATGTATCAAGTA;
TET3: CTCTGAAGTCAGAGGAGAA and
GTCCAGGAAGTTGTGTTC;
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TDG: CAGCTATTCCCTTCAGCA and
GGAACTTCTTCTGGCATTTG;
GAPDH: GATGCTGGCGCTGAGTACG and
GCAGAGATGATGACCCTTTTGG.

Results
To examine the global levels of oxi-mCs in paediatric brain
tumours, we initially performed co-detection of 5hmC with
5caC in two sonic hedgehog (SHH) pathway-activated me-
dulloblastoma (UW228-3 and Daoy) and two ependymoma
(BXD-1425EPN and DKFZ-EP1NS) cell lines using a proto-
col for sensitive immunostaining of modified forms of cyto-
sine that we previously developed and validated by mass
spectrometry [27]. Unlike in HeLa cells where 5caC was
undetectable by immunochemistry under our experimental
conditions (Fig. 1a), we observed non-negligible levels of

both 5hmC and 5caC immunostaining in all the tested me-
dulloblastoma and ependymoma cell lines (Fig. 1b). Re-
markably, the intensity of the 5caC staining differed rather
extensively between the paediatric brain tumour cell lines
(Fig. 1b). Moreover, whereas most of the BXD-1425EPN,
UW228-3 and Daoy cells exhibited similar levels of 5caC
signal, the intensity of 5caC staining varied from strong
(30% of cells in culture) to undetectable (70% of cells) in
DKFZ-EP1NS cells (Fig. 1c, d).
We previously characterised the dynamics of 5caC levels

in mouse embryonic brain tissue and showed that this
mark transiently accumulates during lineage specification
of neural stem cells peaking around 12.5–13.5 days post
coitum (dpc) [27]. Interestingly, we found that 5hmC and
5caC were distributed in a semi-overlapping manner in
the majority of 13.5 dpc murine brain cells, which
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suggested that the oxidation of 5mC to 5caC is limited to
specific genomic regions in these cells [27]. Based on these
results, we decided to compare the nuclear distribution of
5hmC and 5caC in paediatric brain tumours with that of
the cells of the murine embryonic brain at 13.5 dpc stage.
Analysis of our confocal images revealed that, unlike in
the cells of mouse embryonic brain, 5hmC and 5caC dis-
play high degrees of spatial overlap in the nuclei of the

medulloblastoma and ependymoma cell lines we tested
(Figs. 2a–e and 3a–e). Thus, 2.5XD signal intensity profiles
were virtually identical for 5hmC and 5caC in the paediat-
ric brain tumour cell lines (Figs. 2a and 3a); and signal in-
tensity profiles for both modifications were mimicking
each other in ependymoma and medulloblastoma cells
(Figs. 2b–e and 3b–e), suggesting that 5mC oxidation to
5caC occurs genome-widely in these cell lines.
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Next, we attempted to compare the intensities of 5hmC
and 5caC signals between the four tested paediatric brain
tumour cell lines employing analysis of the individual signal
intensity profiles and quantification of the staining inten-
sities in multiple cells (Fig. 4a, b). Both approaches demon-
strated that, whereas the levels of 5hmC signal were
comparable between all the cell lines, 5caC signal in a
subpopulation of DKFZ-EP1NS cells positive for this modi-
fication (DKFZ-EP1NS H) was significantly higher (p < 0.01
to p < 0.001) compared with other paediatric brain tumour
cell lines (Fig. 4b). Importantly, the levels of 5caC

immunostaining did not correlate with 5hmC signal inten-
sity in the SHH medulloblastoma and ependymoma cell
lines (Fig. 4b). To get an insight into potential molecular
mechanisms for the 5caC enrichment in medulloblastoma
and ependymoma cells, we examined the levels of TET1/2/
3 and TDG transcripts in the four paediatric brain tumour
cell lines and HeLa cells. These experiments revealed that
neither TDG nor TET3 expression was substantially alter-
ing between all the five tested cell lines (Fig. 4c). In con-
trast, expression of TET2 and TET1 was generally higher
(e.g. 2.37-fold for BXD-1425EPN and 4.14-fold for DKFZ-
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EP1NS cells for TET2) in the brain tumour cell lines com-
pared with HeLa cells. However, the levels of TET1 tran-
script exhibited the most dramatic increase in DKFZ-
EP1NS and UW228-3 cells differing from HeLa in 26- and
19-fold correspondingly (Fig. 4c). Remarkably, the elevated
levels of TET1 expression in DKFZ-EP1NS and UW228-3

corresponded to strong 5caC enrichment we observed in
these cells.

Discussion
In a recently published review of TET1 functions in can-
cer, the authors came to conclusion that this protein has
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a dual role in tumorigenesis [5]. Thus, according to a
number of studies, TET1 expression is decreased in dif-
ferent types of malignant tissue [16, 28, 29]. Moreover,
suppression of TET1 expression was reported to be
associated with facilitated cell invasion and metastasis
[30, 31] and even to play a critical role in KRAS-induced
tumour transformation [32]. Contrasting with these re-
ports, there is experimental evidence that TET1 acts as
an oncogene in MLL-rearranged leukaemia and breast
tumour malignancies [33, 34]. In this context, our obser-
vation that the levels of TET1 transcript are elevated in
medulloblastoma and ependymoma cells may imply that
this protein is involved in pathogenesis of the paediatric
brain tumours via demethylation of the regulatory ele-
ments of the oncogenes promoting initiation and/or
progression of these types of cancer.
Medulloblastoma and ependymoma represent the two

most common forms of malignant paediatric brain tu-
mours. Both tumour types have recently been categorised
into clinically relevant molecular subgroups [35, 36],
which can be recapitulated by methylation analyses sup-
porting the hypothesis that epigenetic drivers may play a
key role in pathogenesis of these tumour types [37, 38].
Thus, the current classification of medulloblastomas in-
clude Wnt, sonic hedgehog (SHH) and group 3 and 4 sub-
types [39, 40]. The pairs of cell lines used in this study
represent the most aggressive subgroups of each tumour
type that respond poorly to current therapeutic
approaches. UW228-3 and Daoy are both SHH pathway-
activated lines harbouring a mutant TP53 gene (SHH-acti-
vated, TP53 mutant) [39]. BXD-1425EPN and DKFZ-
EP1NS on the other hand represent a subgroup of
ependymomas that carry a C11orf95-RELA fusion onco-
gene which results in activation of the NF-κB signalling
pathway [40]. Remarkably, TP53 function has also recently
been shown to be abrogated in the majority of RELA
ependymomas where it is associated with particularly poor
outcome [41]. In addition, both ependymomas and SHH
medulloblastomas have been demonstrated to maintain a
population of stem-like cells [42, 43]. These cells express
cancer stem cell and neural stem cell markers CD133 and
Nestin [42, 44–46]. Highly tumorigenic and metastatic
ependymoma cell line DKFZ-EP1NS, which demonstrates
in vivo primary tumour recapitulation ability in orthotopic
xenograft models, expresses both these stem cell markers
together with CD15 and ALDH [24]. Importantly, expres-
sion of CD15 and ALDH is also a feature shared by ag-
gressive SHH medulloblastoma cell lines UW228-3 and
Daoy [24, 47]. Correspondingly, deregulation of signalling
pathways important for embryonic brain development
(e.g. SHH, Wnt and Notch pathways) appears to be a hall-
mark of both ependymomas and medulloblastomas and
to play essential role in pathogenesis of these tumours
[22]. Likewise, in line with anticipated significance of Tet

proteins for neuro- and gliogenesis [27], the aberrantly in-
creased TET1-dependent 5mC oxidation may represent
one of the epigenetic signatures of these cancers reflecting
their likely neural progenitor/stem cell origin.
Interestingly, although 5caC enrichment corresponded

to remarkably high levels of TET1 mRNA in DKFZ-
EP1NS and UW228-3 cell lines in our experiments, in
Daoy cells, high intensities of both 5hmC and 5caC
staining were paralleled by levels of TET1/2/3 and TDG
transcripts comparable with those in HeLa cells where
5caC was not detectable by immunochemistry under our
conditions. This suggests that either specific post-
transcriptional mechanisms of regulation of TET1/2/3
expression may be operative in this cell line or oxi-mCs
may be stabilised there due to certain features of DNA
methyltransferases, oxi-mCs-interacting proteins and/or
components of BER machinery specific for Daoy cells.
Although the presence of 5fC and 5caC in genomic

DNA is often perceived as an indication of active TDG-
dependent DNA demethylation, a growing body of
experimental evidence suggests that all the oxi-mCs
may play their own specific roles in gene regulation [27,
48–50]. Thus, developmental dynamics of 5fC is differ-
ent from that of 5hmC [50], and different oxi-mCs are
associated with distinct sets of regulatory sequences in
the genome [27, 51]. Moreover, specific groups of candi-
date “reader” proteins have been identified for each of
the oxi-mCs using mass spectrometry-based approaches
[52]. Interestingly, the lists of potential “reader” proteins
for 5fC and 5caC include a number of transcription fac-
tors, chromatin remodelling proteins and histone-
modifying enzymes [52]. Therefore, our data revealing
the genome-wide 5caC enrichment in UW228-3, Daoy
and a subpopulation of DKFZ-EP1NS cells suggest that
the presence of this modification in regulatory genomic
regions may not only be linked with their demethylation
but also affect transcriptional activity of the correspond-
ing genes in these cells via 5caC-dependent recruitment
of transcriptional factors or chromatin modifying com-
plexes, contributing to the malignant phenotypes of the
paediatric brain tumour cell lines.
Further studies should evaluate functional significance

of increased levels of TET1 and 5caC in medulloblastoma
and ependymoma providing new information on the
pathogenesis and potentially leading to development of
novel targets for therapy of these brain tumours. In
addition, UW228-3, Daoy and DKFZ-EP1NS cells may
represent a suitable experimental model to study the mo-
lecular mechanisms of Tet-dependent 5mC oxidation and
potential roles of oxi-mCs in transcriptional regulation.
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Tet1: Ten-eleven translocation protein 1
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