157 research outputs found

    Microbiome variation in corals with distinct depth distribution ranges across a shallow-mesophotic gradient (15-85 m)

    Get PDF
    Mesophotic coral ecosystems (MCEs) are generally poorly studied, and our knowledge of lower MCEs (below 60 m depth) is largely limited to visual surveys. Here, we provide a first detailed assessment of the prokaryotic community associated with scleractinian corals over a depth gradient to the lower mesophotic realm (15-85 m). Specimens of three Caribbean coral species exhibiting differences in their depth distribution ranges (Agaricia grahamae, Madracis pharensis and Stephanocoenia intersepta) were collected with a manned submersible on the island of Cura double dagger ao, and their prokaryotic communities assessed using 16S rRNA gene sequencing analysis. Corals with narrower depth distribution ranges (depth-specialists) were associated with a stable prokaryotic community, whereas corals with a broader niche range (depth-generalists) revealed a higher variability in their prokaryotic community. The observed depth effects match previously described patterns in Symbiodinium depth zonation. This highlights the contribution of structured microbial communities over depth to the coral's ability to colonize a broader depth range.Austrian Science Fund (FWF); Catlin Group Limited; Global Change Institute; Eddie Bauer Grant for Expeditions by The Explorers Club; Marie Curie Fellowship [FP7-299320]; Lise Meitner Program of the Austrian Science Fund (FWF) [M1363-B20]info:eu-repo/semantics/publishedVersio

    How Does the VSG Coat of Bloodstream Form African Trypanosomes Interact with External Proteins?

    Get PDF
    Variations on the statement "the variant surface glycoprotein (VSG) coat that covers the external face of the mammalian bloodstream form of Trypanosoma brucei acts a physical barrier" appear regularly in research articles and reviews. The concept of the impenetrable VSG coat is an attractive one, as it provides a clear model for understanding how a trypanosome population persists; each successive VSG protects the plasma membrane and is immunologically distinct from previous VSGs. What is the evidence that the VSG coat is an impenetrable barrier, and how do antibodies and other extracellular proteins interact with it? In this review, the nature of the extracellular surface of the bloodstream form trypanosome is described, and past experiments that investigated binding of antibodies and lectins to trypanosomes are analysed using knowledge of VSG sequence and structure that was unavailable when the experiments were performed. Epitopes for some VSG monoclonal antibodies are mapped as far as possible from previous experimental data, onto models of VSG structures. The binding of lectins to some, but not to other, VSGs is revisited with more recent knowledge of the location and nature of N-linked oligosaccharides. The conclusions are: (i) Much of the variation observed in earlier experiments can be explained by the identity of the individual VSGs. (ii) Much of an individual VSG is accessible to antibodies, and the barrier that prevents access to the cell surface is probably at the base of the VSG N-terminal domain, approximately 5 nm from the plasma membrane. This second conclusion highlights a gap in our understanding of how the VSG coat works, as several plasma membrane proteins with large extracellular domains are very unlikely to be hidden from host antibodies by VSG.The authors’ lab is funded by the Wellcome Trust (093008/Z10/Z) and the Medical Research Council (MR/L008246/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.This is the final version of the article. It was first available from PLOS via http://dx.doi.org/10.1371/journal.ppat.100525

    Identification and genome characterization of genotype B and genotype C bovine parainfluenza type 3 viruses isolated in the United States

    Get PDF
    BACKGROUND: Bovine parainfluenza 3 viruses (BPI3V) are respiratory pathogens of cattle that cause disease singly but are often associated with bovine respiratory disease complex (BRDC) in conjunction with other viral and bacterial agents. Bovine vaccines currently contain BPI3V to provide protection against the virus, but there is no current information regarding the BPI3V strains that are circulating in the U.S. RESULTS: A project was initiated to sequence archival BPI3V isolates to study viral evolution over time. This was done with a deep sequencing protocol that generated sequences of multiple RNA virus genomes simultaneously. Analysis of the BPI3V sequences revealed that, in addition to the genotype A (BPI3Va) viruses previously described in the United States, there were two additional genotypes of BPI3V circulating that had been described only in Australia (BPI3Vb) and Asia (BPI3Vc). The U.S. BPI3Vb and BPI3Vc isolates showed some divergence from the Australian and Asian strains; the BPI3Vb were 93 % similar to the Australian Q5592 strain and the BPI3Vc viruses were 98 % similar to the 12Q061 strain that was described in South Korea. Overall, the three genotypes were 82 to 84 % identical to each other and 80 % identical to the most similar human PI3V. Cross-neutralization studies using an APHIS/NVSL BPI3V reference serum showed that neutralization titers against the genotype B and C viruses were 4- to ≥16-fold less then the titer against the APHIS BPI3Va reference strain, SF-4. CONCLUSIONS: This study clearly demonstrated that BPI3Vb and BPI3Vc strains, previously thought to be foreign to the U.S., are indeed circulating in domestic livestock herds. Based on virus neutralization using polyclonal antisera, there were antigenic differences between viruses from these genotypes and the BPI3Va viruses that are included in currently marketed bovine vaccines. Further study of these viruses is warranted to determine pathogenic potential and cross-protection afforded by vaccination

    Genome-wide physical activity interactions in adiposity. A meta-analysis of 200,452 adults

    Get PDF
    Physical activity (PA) may modify the genetic effects that give rise to increased risk of obesity. To identify adiposity loci whose effects are modified by PA, we performed genome-wide interaction meta-analyses of BMI and BMI-adjusted waist circumference and waist-hip ratio from up to 200,452 adults of European (n = 180,423) or other ancestry (n = 20,029). We standardized PA by categorizing it into a dichotomous variable where, on average, 23% of participants were categorized as inactive and 77% as physically active. While we replicate the interaction with PA for the strongest known obesity-risk locus in the FTO gene, of which the effect is attenuated by similar to 30% in physically active individuals compared to inactive individuals, we do not identify additional loci that are sensitive to PA. In additional genome-wide meta-analyses adjusting for PA and interaction with PA, we identify 11 novel adiposity loci, suggesting that accounting for PA or other environmental factors that contribute to variation in adiposity may facilitate gene discovery.Peer reviewe

    Author Correction: c-Rel orchestrates energy-dependent epithelial and macrophage reprogramming in fibrosis

    Get PDF
    Correction to: Nature Metabolism https://doi.org/10.1038/s42255-020-00306-2, published online 9 November 2020. In the version of this article initially published, in the ×40 diseased human kidney images in Supplementary Fig. 1, the FSGS image duplicated the DN image. The error has been corrected in the HTML version of the article
    corecore