2,234 research outputs found

    Inference of population splits and mixtures from genome-wide allele frequency data

    Full text link
    Many aspects of the historical relationships between populations in a species are reflected in genetic data. Inferring these relationships from genetic data, however, remains a challenging task. In this paper, we present a statistical model for inferring the patterns of population splits and mixtures in multiple populations. In this model, the sampled populations in a species are related to their common ancestor through a graph of ancestral populations. Using genome-wide allele frequency data and a Gaussian approximation to genetic drift, we infer the structure of this graph. We applied this method to a set of 55 human populations and a set of 82 dog breeds and wild canids. In both species, we show that a simple bifurcating tree does not fully describe the data; in contrast, we infer many migration events. While some of the migration events that we find have been detected previously, many have not. For example, in the human data we infer that Cambodians trace approximately 16% of their ancestry to a population ancestral to other extant East Asian populations. In the dog data, we infer that both the boxer and basenji trace a considerable fraction of their ancestry (9% and 25%, respectively) to wolves subsequent to domestication, and that East Asian toy breeds (the Shih Tzu and the Pekingese) result from admixture between modern toy breeds and "ancient" Asian breeds. Software implementing the model described here, called TreeMix, is available at http://treemix.googlecode.comComment: 28 pages, 6 figures in main text. Attached supplement is 22 pages, 15 figures. This is an updated version of the preprint available at http://precedings.nature.com/documents/6956/version/

    The biological origin of linguistic diversity

    Get PDF
    In contrast with animal communication systems, diversity is characteristic of almost every aspect of human language. Languages variously employ tones, clicks, or manual signs to signal differences in meaning; some languages lack the noun-verb distinction (e.g., Straits Salish), whereas others have a proliferation of fine-grained syntactic categories (e.g., Tzeltal); and some languages do without morphology (e.g., Mandarin), while others pack a whole sentence into a single word (e.g., Cayuga). A challenge for evolutionary biology is to reconcile the diversity of languages with the high degree of biological uniformity of their speakers. Here, we model processes of language change and geographical dispersion and find a consistent pressure for flexible learning, irrespective of the language being spoken. This pressure arises because flexible learners can best cope with the observed high rates of linguistic change associated with divergent cultural evolution following human migration. Thus, rather than genetic adaptations for specific aspects of language, such as recursion, the coevolution of genes and fast-changing linguistic structure provides the biological basis for linguistic diversity. Only biological adaptations for flexible learning combined with cultural evolution can explain how each child has the potential to learn any human language

    The Role of Inbreeding in the Extinction of a European Royal Dynasty

    Get PDF
    The kings of the Spanish Habsburg dynasty (1516–1700) frequently married close relatives in such a way that uncle-niece, first cousins and other consanguineous unions were prevalent in that dynasty. In the historical literature, it has been suggested that inbreeding was a major cause responsible for the extinction of the dynasty when the king Charles II, physically and mentally disabled, died in 1700 and no children were born from his two marriages, but this hypothesis has not been examined from a genetic perspective. In this article, this hypothesis is checked by computing the inbreeding coefficient (F) of the Spanish Habsburg kings from an extended pedigree up to 16 generations in depth and involving more than 3,000 individuals. The inbreeding coefficient of the Spanish Habsburg kings increased strongly along generations from 0.025 for king Philip I, the founder of the dynasty, to 0.254 for Charles II and several members of the dynasty had inbreeding coefficients higher than 0.20. In addition to inbreeding due to unions between close relatives, ancestral inbreeding from multiple remote ancestors makes a substantial contribution to the inbreeding coefficient of most kings. A statistically significant inbreeding depression for survival to 10 years is detected in the progenies of the Spanish Habsburg kings. The results indicate that inbreeding at the level of first cousin (F = 0.0625) exerted an adverse effect on survival of 17.8%±12.3. It is speculated that the simultaneous occurrence in Charles II (F = 0.254) of two different genetic disorders: combined pituitary hormone deficiency and distal renal tubular acidosis, determined by recessive alleles at two unlinked loci, could explain most of the complex clinical profile of this king, including his impotence/infertility which in last instance led to the extinction of the dynasty

    An evolutionary model explaining the Neolithic transition from egalitarianism to leadership and despotism.

    Get PDF
    The Neolithic was marked by a transition from small and relatively egalitarian groups, to much larger groups with increased stratification. But the dynamics of thisremain poorly understood. It is hard to see how despotism can arise without coercion, yet coercion could not easily have occurred in an egalitarian setting. Using a quanti-tative model of evolution in a patch-structured population, we demonstrate that the interaction between demographic and ecological factors can overcome this conundrum.We model the co-evolution of individual preferences for hierarchy alongside the degree of despotism of leaders, and the dispersal preferences of followers. We show that voluntary leadership without coercion can evolve in small groups, when leaders help to solve coordination problems related to resource production. An example is coordinating construction of an irrigation system. Our model predicts that the transition to larger despotic groups will then occur when: 1. surplus resources lead to demographicexpansion of groups, removing the viability of an acephalous niche in the same areaand so locking individuals into hierarchy; 2. high dispersal costs limit followers' abilityto escape a despot. Empirical evidence suggests that these conditions were likely metfor the first time during the subsistence intensification of the Neolithic

    Anesthesia of Epinephelus marginatus with essential oil of Aloysia polystachya: an approach on blood parameters

    Get PDF
    This study investigated the anesthetic potential of the essential oil (EO) of Aloysia polystachya in juveniles of dusky grouper (Epinephelus marginatus). Fish were exposed to different concentrations of EO of A. polystachya to evaluate time of induction and recovery from anesthesia. In the second experiment, fish were divided into four groups: control, ethanol and 50 or 300 mu L L-1 EO of A. polystachya, and each group was submitted to induction for 3.5 min and recovery for 5 or 10 min. The blood gases and glucose levels showed alterations as a function of the recovery times, but Na+ and K+ levels did not show any alteration. In conclusion, the EO from leaves of A. polystachya is an effective anesthetic for dusky grouper, because anesthesia was reached within the recommended time at EO concentrations of 300 and 400 mu L L-1. However, most evaluated blood parameters showed compensatory responses due to EO exposure.Fundacao de Amparo a Pesquisa do Estado do Rio Grande do Sul/Programa de Apoio a Nucleos de Excelencia (FAPERGS/PRONEX) [10/0016-8]; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) [470964/2009-0]; Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior, Brazil (CAPES)info:eu-repo/semantics/publishedVersio

    Gene action for cold tolerance in chickpea

    Get PDF
    Six crosses were investigated using combining ability and generation mean analyses for reaction to cold tolerance in chickpea (Cicer arietinum L.). The combining ability variances revealed the significance of both additive and nonadditive gene effects, with preponderance of additive gene effects. The generation mean analysis revealed the presence of genie interactions in addition to additive and dominance gene effects. Among the interactions, additive×additive and dominance×dominance with duplicate epistasis were present. Cold tolerance was dominant over susceptibility to cold. Selection for cold tolerance would be more effective if dominance and epistatic effects were reduced after a few generations of selfing

    Phenotypic and genotypic monitoring of Schistosoma mansoni in Tanzanian schoolchildren five years into a preventative chemotherapy national control programme

    Get PDF
    We conducted combined in vitro PZQ efficacy testing with population genetic analyses of S. mansoni collected from children from two schools in 2010, five years after the introduction of a National Control Programme. Children at one school had received four annual PZQ treatments and the other school had received two mass treatments in total. We compared genetic differentiation, indices of genetic diversity, and estimated adult worm burden from parasites collected in 2010 with samples collected in 2005 (before the control programme began) and in 2006 (six months after the first PZQ treatment). Using 2010 larval samples, we also compared the genetic similarity of those with high and low in vitro sensitivity to PZQ

    The acheulean handaxe : More like a bird's song than a beatles' tune?

    Get PDF
    © 2016 Wiley Periodicals, Inc. KV is supported by the Netherlands Organization for Scientific Research. MC is supported by the Canada Research Chairs Program, the Social Sciences and Humanities Research of Canada, the Canada Foundation for Innovation, the British Columbia Knowledge Development Fund, and Simon Fraser UniversityPeer reviewedPublisher PD
    corecore