959 research outputs found
Yukawa Unification and the Superpartner Mass Scale
Naturalness in supersymmetry (SUSY) is under siege by increasingly stringent
LHC constraints, but natural electroweak symmetry breaking still remains the
most powerful motivation for superpartner masses within experimental reach. If
naturalness is the wrong criterion then what determines the mass scale of the
superpartners? We motivate supersymmetry by (1) gauge coupling unification, (2)
dark matter, and (3) precision b-tau Yukawa unification. We show that for an
LSP that is a bino-Higgsino admixture, these three requirements lead to an
upper-bound on the stop and sbottom masses in the several TeV regime because
the threshold correction to the bottom mass at the superpartner scale is
required to have a particular size. For tan beta about 50, which is needed for
t-b-tau unification, the stops must be lighter than 2.8 TeV when A_t has the
opposite sign of the gluino mass, as is favored by renormalization group
scaling. For lower values of tan beta, the top and bottom squarks must be even
lighter. Yukawa unification plus dark matter implies that superpartners are
likely in reach of the LHC, after the upgrade to 14 (or 13) TeV, independent of
any considerations of naturalness. We present a model-independent, bottom-up
analysis of the SUSY parameter space that is simultaneously consistent with
Yukawa unification and the hint for m_h = 125 GeV. We study the flavor and dark
matter phenomenology that accompanies this Yukawa unification. A large portion
of the parameter space predicts that the branching fraction for B_s to mu^+
mu^- will be observed to be significantly lower than the SM value.Comment: 34 pages plus appendices, 20 figure
Minimal flavour violation extensions of the seesaw
We analyze the most natural formulations of the minimal lepton flavour
violation hypothesis compatible with a type-I seesaw structure with three heavy
singlet neutrinos N, and satisfying the requirement of being predictive, in the
sense that all LFV effects can be expressed in terms of low energy observables.
We find a new interesting realization based on the flavour group (being and respectively the SU(2) singlet and
doublet leptons). An intriguing feature of this realization is that, in the
normal hierarchy scenario for neutrino masses, it allows for sizeable
enhancements of transitions with respect to LFV processes involving
the lepton. We also discuss how the symmetries of the type-I seesaw
allow for a strong suppression of the N mass scale with respect to the scale of
lepton number breaking, without implying a similar suppression for possible
mechanisms of N productionComment: 14 pages, 6 figure
A habituation account of change detection in same/different judgments
We investigated the basis of change detection in a short-term priming task. In two experiments, participants were asked to indicate whether or not a target word was the same as a previously presented cue. Data from an experiment measuring magnetoencephalography failed to find different patterns for “same” and “different” responses, consistent with the claim that both arise from a common neural source, with response magnitude defining the difference between immediate novelty versus familiarity. In a behavioral experiment, we tested and confirmed the predictions of a habituation account of these judgments by comparing conditions in which the target, the cue, or neither was primed by its presentation in the previous trial. As predicted, cue-primed trials had faster response times, and target-primed trials had slower response times relative to the neither-primed baseline. These results were obtained irrespective of response repetition and stimulus–response contingencies. The behavioral and brain activity data support the view that detection of change drives performance in these tasks and that the underlying mechanism is neuronal habituation
Spontaneous R-Parity Violation, Flavor Symmetry and Tribimaximal Mixing
We explore the possibility of spontaneous R parity violation in the context
of flavor symmetry. Our model contains singlet matter chiral superfields which are arranged as triplet of
and as well as few additional Higgs chiral superfields which are singlet
under MSSM gauge group and belong to triplet and singlet representation under
the flavor symmetry. R parity is broken spontaneously by the vacuum
expectation values of the different sneutrino fields and hence we have
neutrino-neutralino as well as neutrino-MSSM gauge singlet higgsino mixings in
our model, in addition to the standard model neutrino- gauge singlet neutrino,
gaugino-higgsino and higgsino-higgsino mixings. Because all of these mixings we
have an extended neutral fermion mass matrix. We explore the low energy
neutrino mass matrix for our model and point out that with some specific
constraints between the sneutrino vacuum expectation values as well as the MSSM
gauge singlet Higgs vacuum expectation values, the low energy neutrino mass
matrix will lead to a tribimaximal mixing matrix. We also analyze the potential
minimization for our model and show that one can realize a higher vacuum
expectation value of the singlet
sneutrino fields even when the other sneutrino vacuum expectation values are
extremely small or even zero.Comment: 18 page
Repressing Anarchy in Neutrino Mass Textures
The recent results that is relatively large, of the order of
the previous upper bound, and the indications of a sizable deviation of
from the maximal value are in agreement with the predictions of
Anarchy in the lepton sector. The quark and charged lepton hierarchies can then
be reproduced in a SU(5) GUT context by attributing non-vanishing
charges, different for each family, only to the SU(5) tenplet states. The fact
that the observed mass hierarchies are stronger for up quarks than for down
quarks and charged leptons supports this idea. As discussed in the past, in the
flexible context of , different patterns of charges can
be adopted going from Anarchy to various types of hierarchy. We revisit this
approach by also considering new models and we compare all versions to the
present data. As a result we confirm that, by relaxing the extreme ansatz of
equal charges for all SU(5) pentaplets and singlets, better
agreement with the data than for Anarchy is obtained without increasing the
model complexity. We also present the distributions obtained in the different
models for the Dirac CP-violating phase. Finally we discuss the relative merits
of these simple models.Comment: v1: 12 pages, 3 figures; v2: 13 pages, 3 figures, text improved,
matches version accepted for publication; v3: submitted to add an
acknowledgment to a networ
Study of decays to the final state and evidence for the decay
A study of decays is performed for the first time
using data corresponding to an integrated luminosity of 3.0
collected by the LHCb experiment in collisions at centre-of-mass energies
of and TeV. Evidence for the decay
is reported with a significance of 4.0 standard deviations, resulting in the
measurement of
to
be .
Here denotes a branching fraction while and
are the production cross-sections for and mesons.
An indication of weak annihilation is found for the region
, with a significance of
2.4 standard deviations.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-022.html,
link to supplemental material inserted in the reference
Caveolin-1 protects B6129 mice against Helicobacter pylori gastritis.
Caveolin-1 (Cav1) is a scaffold protein and pathogen receptor in the mucosa of the gastrointestinal tract. Chronic infection of gastric epithelial cells by Helicobacter pylori (H. pylori) is a major risk factor for human gastric cancer (GC) where Cav1 is frequently down-regulated. However, the function of Cav1 in H. pylori infection and pathogenesis of GC remained unknown. We show here that Cav1-deficient mice, infected for 11 months with the CagA-delivery deficient H. pylori strain SS1, developed more severe gastritis and tissue damage, including loss of parietal cells and foveolar hyperplasia, and displayed lower colonisation of the gastric mucosa than wild-type B6129 littermates. Cav1-null mice showed enhanced infiltration of macrophages and B-cells and secretion of chemokines (RANTES) but had reduced levels of CD25+ regulatory T-cells. Cav1-deficient human GC cells (AGS), infected with the CagA-delivery proficient H. pylori strain G27, were more sensitive to CagA-related cytoskeletal stress morphologies ("humming bird") compared to AGS cells stably transfected with Cav1 (AGS/Cav1). Infection of AGS/Cav1 cells triggered the recruitment of p120 RhoGTPase-activating protein/deleted in liver cancer-1 (p120RhoGAP/DLC1) to Cav1 and counteracted CagA-induced cytoskeletal rearrangements. In human GC cell lines (MKN45, N87) and mouse stomach tissue, H. pylori down-regulated endogenous expression of Cav1 independently of CagA. Mechanistically, H. pylori activated sterol-responsive element-binding protein-1 (SREBP1) to repress transcription of the human Cav1 gene from sterol-responsive elements (SREs) in the proximal Cav1 promoter. These data suggested a protective role of Cav1 against H. pylori-induced inflammation and tissue damage. We propose that H. pylori exploits down-regulation of Cav1 to subvert the host's immune response and to promote signalling of its virulence factors in host cells
Observation of Bc+ →j /ψD (∗)K (∗) decays
A search for the decays B+c→J/ψD(*)0K+ and B+c→J/ψD(*)+K*0 is performed with data collected at the LHCb experiment corresponding to an integrated luminosity of 3 fb−1. The decays B+c→J/ψ0K+ and B+c→J/ψD*0K+ are observed for the first time, while first evidence is reported for the B+c→JψD*+K*0 and B+c→J/ψD+K*0 decays. The branching fractions of these decays are determined relative to the B+c→J/ψπ+ decay. The B+c mass is measured, using the J/ψD0K+ final state, to be 6274.28±1.40(stat)±0.32(syst) MeV/c2. This is the most precise single measurement of the B+c mass to date
Recommended from our members
Fundamental differences in patterns of retinal ageing between primates and mice
Photoreceptors have high metabolic demands and age rapidly, undermining visual function. We base our understanding mainly on ageing mice where elevated inflammation, extracellular deposition, including that of amyloid beta, and rod and cone photoreceptor loss occur, but cones are not lost in ageing primate although their function declines, revealing that primate and mouse age differently. We examine ageing primate retinae and show elevated stress but low inflammation. However, aged primates have a >70% reduction in adenosine triphosphate (ATP) and a decrease in cytochrome c oxidase. There is a shift in cone mitochondrial positioning and glycolytic activity increases. Bruch’s membrane thickens but unlike in mice, amyloid beta is absent. Hence, reduced ATP may explain cone functional decline in ageing but their retained presence offers the possibility of functional restoration if they can be fuelled appropriately to restore cellular function. This is important because as humans we largely depend on cone function to see and are rarely fully dark adapted. Presence of limited aged inflammation and amyloid beta deposition question some of the therapeutic approaches taken to resolve problems of retinal ageing in humans and the possible lack of success in clinical trials in macular degeneration that have targeted inflammatory agents
- …
