700 research outputs found
Topaz : Indian Summer (November)
https://digitalcommons.library.umaine.edu/mmb-ps/1949/thumbnail.jp
Recommended from our members
Contribution of particulate nitrate to airborne measurements of total reactive nitrogen
Simultaneous measurements of speciated, total reactive nitrogen (NOy) and particulate NO3 (particle diameter <1.3 ÎŒm) were made on board the NASA P-3B aircraft over the western Pacific in February-April 2001 during the Transport and Chemical Evolution over the Pacific (TRACE-P) experiment. Gas-phase and particulate NOy was measured using a gold tube catalytic converter. For the interpretation of particulate NOy, conversion efficiencies of particulate NH4NO3, KNO3, NaNO3, and Ca(NO3)2 were measured in the laboratory. Only NH4NO3 showed quantitative conversion, and its conversion efficiency was as high as that for HNO3. NOy measured on board the aircraft was found to be systematically higher by 10-30% than the sum of the individual NOy gas components (ÎŁ(NOy)i) at 0-4 km. Particulate NO3- concentrations measured by a particle-into-liquid sampler (PILS) were nearly equal to NOy - ÎŁ(NOy)i under low-dust-loading conditions. The PILS data showed that the majority of the particulate NO3- was in the form of NH4NO3 under these conditions, suggesting that NH4NO3 particles were quantitatively converted to detectable NO by the NOy converter, consistent with the laboratory experiments. The contribution of particulate NO3- to NOy was most important at 0-2 km, where NO3- constituted 10-30% of NOy during TRACE-P. On average, the amounts of particulate NO3- and gas-phase HNO3 were comparable in this region. Copyright 2005 by the American Geophysical Union
Recommended from our members
Photochemistry of ozone over the western Pacific from winter to spring
Aircraft measurements of ozone (O3) and its precursors, including NO, CO, H2O, and nonmethane hydrocarbons (NMHCs), were made over the western Pacific in the 20° - 45°N latitude range in January and April-May 2002 during the Pacific Exploration of Asian Continental Emission (PEACE)-A and B campaigns. These measurements have provided data sets that, in combination with Transport and Chemical Evolution over the Pacific (TRACE-P) data taken in March 2001, enable studies of O3 photochemistry from winter to late spring. A photochemical box model is used to calculate ozone formation (F(O3)) and destruction (D(O3)) rates constrained by the observed species concentrations. The values of F(O3) and D(O3) are controlled directly by NO, J(O1D) (O3 photolysis frequency), H2O, OH, and HO2. Changes in HO2 concentration cause corresponding changes in both F(O3) and D(O3) leading to their coupling. Concentrations of these species, which are strongly influenced by photochemistry and transport from the Asian continent, underwent large seasonal variations. In the boundary layer (0-3 km), NO was much higher in January than in April-May, because of stronger winds, lower convective activities, and lower oxidation rates by OH in winter. The net O3 formation rate, given by P(O3) = F(O3) - D(O3), was largely positive in the boundary layer at 30°-45°N (1.5-4 ppbv d-1) in January, mainly because of high NO and low H2O values. Net O3 formation continued from January to the end of March, demonstrating that the western Pacific is an important O3 source region during this season. Net O3 formation nearly ceased by late April/May because of the decrease in NO and the increase in H2O. In the latitude range of 20°-30°N, P(O3) in the boundary layer was positive in January and turned negative by March. The earlier transition was mainly due to lower NO and higher H2O concentrations, combined with weaker transport and higher temperatures than those at 30°-45°N. The upper troposphere (6-12 km) has been shown to be a region of net O3 formation throughout most of the year because of high NO and low H2O. The present study illustrates that a decrease in the net O3 formation rate at 20°-45°N latitude from winter to late spring is explained systematically by the increases in J(O1D), H2O, OH, and HO2 (primarily due to increases in temperature and solar radiation) and the decrease in NO (primarily due to decrease in transport from the Asian continent). Differences in the seasonal variation of O3 photochemistry observed over the North American continent are interpreted in terms of the differences in factors controlling O3 formation and destruction. Copyright 2004 by the American Geophysical Union
Comparing satellite- to ground-based automated and manual cloud coverage observations â a case study
In this case study we compare cloud fractional cover measured by radiometers on polar satellites (AVHRR) and on one geostationary satellite (SEVIRI) to ground-based manual (SYNOP) and automated observations by a cloud camera (Hemispherical Sky Imager, HSI). These observations took place in Hannover, Germany, and in Lauder, New Zealand, over time frames of 3 and 2 months, respectively. Daily mean comparisons between satellite derivations and the ground-based HSI found the deviation to be 6 14% for AVHRR and 8 16% for SEVIRI, which can be considered satisfactory. AVHRRâs instantaneous differences are smaller (2 22 %) than instantaneous SEVIRI cloud fraction estimates (8 29 %) when compared to HSI due to resolution and scenery effect issues. All spaceborne observations show a very good skill in detecting completely overcast skies (cloud cover 6 oktas) with probabilities between 92 and 94% and false alarm rates between 21 and 29% for AVHRR and SEVIRI in Hannover, Germany. In the case of a clear sky (cloud cover lower than 3 oktas) we find good skill with detection probabilities between 72 and 76 %. We find poor skill, however, whenever broken clouds occur (probability of detection is 32% for AVHRR and 12% for SEVIRI in Hannover, Germany). In order to better understand these discrepancies we analyze the influence of algorithm features on the satellite-based data. We find that the differences between SEVIRI and HSI cloud fractional cover (CFC) decrease (from a bias of 8 to almost 0 %) with decreasing number of spatially averaged pixels and decreasing index which determines the cloud coverage in each âcloud-contaminatedâ pixel of the binary map. We conclude that window size and index need to be adjusted in order to improve instantaneous SEVIRI and AVHRR estimates. Due to its automated operation and its spatial, temporal and spectral resolution, we recommend as well that more automated ground-based instruments in the form of cloud cameras should be installed as they cover larger areas of the sky than other automated ground-based instruments. These cameras could be an essential supplement to SYNOP observation as they cover the same spectral wavelengths as the human eye.DF
Recommended from our members
Removal of NOx and NOy in biomass burning plumes in the boundary layer over northern Australia
Recommended from our members
Effects of biomass burning, lightning, and convection on O-3, CO, and NOy over the tropical Pacific and Australia in August-October 1998 and 1999
Recommended from our members
Emergence of spatially heterogeneous burst suppression in a neural field model of electrocortical activity
Burst suppression in the electroencephalogram (EEG) is a well-described phenomenon that occurs during deep anesthesia, as well as in a variety of congenital and acquired brain insults. Classically it is thought of as spatially synchronous, quasi-periodic bursts of high amplitude EEG separated by low amplitude activity. However, its characterization as a âglobal brain stateâ has been challenged by recent results obtained with intracranial electrocortigraphy. Not only does it appear that burst suppression activity is highly asynchronous across cortex, but also that it may occur in isolated regions of circumscribed spatial extent. Here we outline a realistic neural field model for burst suppression by adding a slow process of synaptic resource depletion and recovery, which is able to reproduce qualitatively the empirically observed features during general anesthesia at the whole cortex level. Simulations reveal heterogeneous bursting over the model cortex and complex spatiotemporal dynamics during simulated anesthetic action, and provide forward predictions of neuroimaging signals for subsequent empirical comparisons and more detailed characterization. Because burst suppression corresponds to a dynamical end-point of brain activity, theoretically accounting for its spatiotemporal emergence will vitally contribute to efforts aimed at clarifying whether a common physiological trajectory is induced by the actions of general anesthetic agents. We have taken a first step in this direction by showing that a neural field model can qualitatively match recent experimental data that indicate spatial differentiation of burst suppression activity across cortex
Recommended from our members
Removal of NOx and NOy in Asian outflow plumes: Aircraft measurements over the western Pacific in Januray 2002
The Pacific Exploration of Asian Continental Emission Phase A (PEACE-A) aircraft measurement campaign was conducted over the western Pacific in January 2002. Correlations of carbon monoxide (CO) with carbon dioxide (CO2) and back trajectories are used to identify plumes strongly affected by Asian continental emissions. ÎCO/ÎCO2 ratios (i.e., linear regression slopes of CO-CO2) in the plumes generally fall within the variability range of the CO/CO2 emission ratios estimated from an emission inventory for east Asia, demonstrating the consistency between the aircraft measurements and the emission characterization. Removal rates of reactive nitrogen (NOx and NOy) for the study region (altitude <4 km, 124°-140°E, 25°-45°N) are estimated using the correlation with CO2, the photochemical age of the plumes, and the NOx/ CO2 emission ratio derived from the emission inventory. The plume age is estimated from the rates of hydrocarbon decay and hydroxyl radical (OH) concentration calculated using a constrained photochemical box model. The average lifetime of NOx is estimated to be 1.2 ± 0.4 days. Possible processes controlling the NOx lifetime are discussed in conjunction with results from earlier studies. The average lifetime of NOy is estimated to be 1.7 ± 0.5 days, which is comparable to the NOy lifetime of 1.7-1.8 days that has been previously reported for outflow from the United States. This similarity suggests the importance of chemical processing near the source regions in determining the NOy abundance. Copyright 2004 by the American Geophysical Union
- âŠ