183 research outputs found

    Geochemistry, Mineralogy and Microbiology of Molybdenum in Mining-Affected Environments

    Get PDF
    This is the final version of the article. Available from MDPI via the DOI in this record.Molybdenum is an essential element for life, with growing production due to a constantly expanding variety of industrial applications. The potentially harmful effects of Mo on the environment, and on human and ecosystem health, require knowledge of Mo behavior in mining-affected environments. Mo is usually present in trace amounts in ore deposits, but mining exploitation can lead to wastes with very high Mo concentrations (up to 4000 mg/kg Mo for tailings), as well as soil, sediments and water contamination in surrounding areas. In mine wastes, molybdenum is liberated from sulfide mineral oxidation and can be sorbed onto secondary Fe(III)-minerals surfaces (jarosite, schwertmannite, ferrihydrite) at moderately acidic waters, or taken up in secondary minerals such as powellite and wulfenite at neutral to alkaline pH. To date, no Mo-metabolising bacteria have been isolated from mine wastes. However, laboratory and in-situ experiments in other types of contaminated land have suggested that several Mo-reducing and -oxidising bacteria may be involved in the cycling of Mo in and from mine wastes, with good potential for bioremediation. Overall, a general lack of data is highlighted, emphasizing the need for further research on the contamination, geochemistry, bio-availability and microbial cycling of Mo in mining-affected environments to improve environmental management and remediation actions.Francesca Frascoli was supported by an Erasmus+ traineeship studentship EQF level 7

    Metabifurcation analysis of a mean field model of the cortex

    Full text link
    Mean field models (MFMs) of cortical tissue incorporate salient features of neural masses to model activity at the population level. One of the common aspects of MFM descriptions is the presence of a high dimensional parameter space capturing neurobiological attributes relevant to brain dynamics. We study the physiological parameter space of a MFM of electrocortical activity and discover robust correlations between physiological attributes of the model cortex and its dynamical features. These correlations are revealed by the study of bifurcation plots, which show that the model responses to changes in inhibition belong to two families. After investigating and characterizing these, we discuss their essential differences in terms of four important aspects: power responses with respect to the modeled action of anesthetics, reaction to exogenous stimuli, distribution of model parameters and oscillatory repertoires when inhibition is enhanced. Furthermore, while the complexity of sustained periodic orbits differs significantly between families, we are able to show how metamorphoses between the families can be brought about by exogenous stimuli. We unveil links between measurable physiological attributes of the brain and dynamical patterns that are not accessible by linear methods. They emerge when the parameter space is partitioned according to bifurcation responses. This partitioning cannot be achieved by the investigation of only a small number of parameter sets, but is the result of an automated bifurcation analysis of a representative sample of 73,454 physiologically admissible sets. Our approach generalizes straightforwardly and is well suited to probing the dynamics of other models with large and complex parameter spaces

    Agent-based and continuum models for spatial dynamics of infection by oncolytic viruses

    Get PDF
    The use of oncolytic viruses as cancer treatment has received considerable attention in recent years, however the spatial dynamics of this viral infection is still poorly understood. We present here a stochastic agent-based model describing infected and uninfected cells for solid tumours, which interact with viruses in the absence of an immune response. Two kinds of movement, namely undirected random and pressure-driven movements, are considered: the continuum limit of the models is derived and a systematic comparison between the systems of partial differential equations and the individual-based model, in one and two dimensions, is carried out. In the case of undirected movement, a good agreement between agent-based simulations and the numerical and well-known analytical results for the continuum model is possible. For pressure-driven motion, instead, we observe a wide parameter range in which the infection of the agents remains confined to the center of the tumour, even though the continuum model shows traveling waves of infection; outcomes appear to be more sensitive to stochasticity and uninfected regions appear harder to invade, giving rise to irregular, unpredictable growth patterns. Our results show that the presence of spatial constraints in tumours' microenvironments limiting free expansion has a very significant impact on virotherapy. Outcomes for these tumours suggest a notable increase in variability. All these aspects can have important effects when designing individually tailored therapies where virotherapy is included.Comment: 29 pages, 10 figures. Supplementary material available at https://tinyurl.com/5c5nxss

    Neonatal-derived IL-17 producing dermal gammadelta T cells are required to prevent spontaneous atopic dermatitis

    Get PDF
    Atopic Dermatitis (AD) is a T cell-mediated chronic skin disease and is associated with altered skin barrier integrity. Infants with mutations in genes involved in tissue barrier fitness are predisposed towards inflammatory diseases, but most do not develop or sustain the diseases, suggesting that there exist regulatory immune mechanisms to prevent aberrant inflammation. The absence of one single murine dermal cell type, the innate neonatal-derived IL-17 producing gammadelta T (Tgammadelta17) cells, from birth resulted in spontaneous, highly penetrant AD with many of the major hallmarks of human AD. In Tgammadelta17 cell-deficient mice, basal keratinocyte transcriptome was altered months in advance of AD induction. Tgammadelta17 cells respond to skin commensal bacteria and the fulminant disease in their absence was driven by skin commensal bacteria dysbiosis. AD in this model was characterized by highly expanded dermal alphabeta T clonotypes that produce the type three cytokines, IL-17 and IL-22. These results demonstrate that neonatal Tgammadelta17 cells are innate skin regulatory T cells that are critical for skin homeostasis, and that IL-17 has dual homeostatic and inflammatory function in the skin

    Chaotic properties of planar elongational flow and planar shear flow: lyapunov exponents, conjugate-pairing rule, and phase space contraction

    Get PDF
    The simulation of planar elongational flow in a nonequilibrium steady state for arbitrarily long times has recently been made possible, combining the SLLOD algorithm with periodic boundary conditions for the simulation box. We address the fundamental questions regarding the chaotic behavior of this type of flow, comparing its chaotic properties with those of the well-established SLLOD algorithm for planar shear flow. The spectra of Lyapunov exponents are analyzed for a number of state points where the energy dissipation is the same for both flows, simulating a nonequilibrium steady state for isoenergetic and isokinetic constrained dynamics. We test the conjugate-pairing rule and confirm its validity for planar elongation flow, as is expected from the Hamiltonian nature of the adiabatic equations of motion. Remarks about the chaoticity of the convective part of the flows, the link between Lyapunov exponents and viscosity, and phase space contraction for both flows complete the study
    • ā€¦
    corecore