1,620 research outputs found

    Covariant Gauge Fixing for Super IIA D-branes

    Full text link
    For the kappa-symmetric super IIA D-brane action by the canonical approach we construct an equivalent effective action which is characterized by an auxiliary scalar field. By analyzing the canonical equations of motion for the kappa-symmetry-gauge-fixed action we find a suitable conformal-like covariant gauge fixing of reparametrization symmetry to obtain a simplified effective action where the non-linear square root structure is removed. We discuss how the two effective actions are connected.Comment: 9 pages, LaTeX2e, no figures, one reference adde

    Silicon Sensors implemented on p-type substrates for high radiation resistance applications

    Get PDF
    Silicon based micropattern detectors are essential elements of modern high energy physics experiments. Cost effectiveness and high radiation resistance are two important requirements for technologies to be used in inner tracking devices. Processes based on p-type substrates have very strong appeal for these applications. Recent results and prototype efforts under way are reviewed.Comment: 7 pages, 2 figures; invited paper at Vertex 2006, Perugia, Italy, september 200

    T-duality and Generalized Kahler Geometry

    Full text link
    We use newly discovered N = (2, 2) vector multiplets to clarify T-dualities for generalized Kahler geometries. Following the usual procedure, we gauge isometries of nonlinear sigma-models and introduce Lagrange multipliers that constrain the field-strengths of the gauge fields to vanish. Integrating out the Lagrange multipliers leads to the original action, whereas integrating out the vector multiplets gives the dual action. The description is given both in N = (2, 2) and N = (1, 1) superspace.Comment: 14 pages; published version: some conventions improved, minor clarification

    Radiation Induced Point and Cluster-Related Defects with Strong Impact to Damage Properties of Silicon Detectors

    Full text link
    This work focuses on the investigation of radiation induced defects responsible for the degradation of silicon detectors. Comparative studies of the defects induced by irradiation with 60Co- rays, 6 and 15 MeV electrons, 23 GeV protons and 1 MeV equivalent reactor neutrons revealed the existence of point defects and cluster related centers having a strong impact on damage properties of Si diodes. The detailed relation between the microscopic reasons as based on defect analysis and their macroscopic consequences for detector performance are presented. In particular, it is shown that the changes in the Si device properties after exposure to high levels of 60Co- doses can be completely understood by the formation of two point defects, both depending strongly on the Oxygen concentration in the silicon bulk. Specific for hadron irradiation are the annealing effects which decrease resp. increase the originally observed damage effects as seen by the changes of the depletion voltage. A group of three cluster related defects, revealed as deep hole traps, proved to be responsible specifically for the reverse annealing. Their formation is not affected by the Oxygen content or Si growth procedure suggesting that they are complexes of multi-vacancies located inside extended disordered regions.Comment: 14 pages, 15 figure

    Stable nitrogen-cycling capacity in relation to fertilization and intercropping in a sub-boreal grassland

    Get PDF
    Grasslands are important in sub-boreal climate agricultural systems and are managed with various combinations of N fertilization and plant species. Ammonia-oxidizing and denitrifying microorganisms are key players in determining the fate of nitrogen (N) and thereby also the yield in grassland systems and their impact on gaseous N losses and leaching. We established a three-year field study in southern Finland with fertilizer treatment as a main-plot factor, including organic and synthetic fertilizers and plant species and mixtures thereof as the sub-plot factor. We quantified six genes encoding key N-cycling enzymes by quantitative PCR to determine the abundance of the communities involved in N-transformation processes and also included previously published data on crop yield, soil properties and the overall bacterial community composition. With the exception of ammonia oxidizing bacteria (AOB), which were primarily affected by fertilization, the abundances of all other N-cycling communities changed over time with either an increase or decrease from summer to autumn. Differences in gene abundances between plant species treatments and in fertilizer by plant species interactions were detected mainly in the beginning of the cropping season during the first year. The nirS-type denitrifiers and nosZII nitrous oxide reducers responded more to changes in soil properties than their functional counterpart nirK and nosZI communities. Using structural equation modeling, we show that the overall microbial community composition and diversity played an important role in mediating the management effects on crop yield, genetic potential for N retention and N2O sink capacity. However, a trade-off between the genetic potential for N retention and N2O sink capacity was detected, indicating the challenges in managing grasslands in a sustainable way.Peer reviewe

    Stable nitrogen-cycling capacity in relation to fertilization and intercropping in a sub-boreal grassland

    Get PDF
    Grasslands are important in sub-boreal climate agricultural systems and are managed with various combinations of N fertilization and plant species. Ammonia-oxidizing and denitrifying microorganisms are key players in determining the fate of nitrogen (N) and thereby also the yield in grassland systems and their impact on gaseous N losses and leaching. We established a three-year field study in southern Finland with fertilizer treatment as a main-plot factor, including organic and synthetic fertilizers and plant species and mixtures thereof as the sub-plot factor. We quantified six genes encoding key N-cycling enzymes by quantitative PCR to determine the abundance of the communities involved in N-transformation processes and also included previously published data on crop yield, soil properties and the overall bacterial community composition. With the exception of ammonia oxidizing bacteria (AOB), which were primarily affected by fertilization, the abundances of all other N-cycling communities changed over time with either an increase or decrease from summer to autumn. Differences in gene abundances between plant species treatments and in fertilizer by plant species interactions were detected mainly in the beginning of the cropping season during the first year. The nirS-type denitrifiers and nosZII nitrous oxide reducers responded more to changes in soil properties than their functional counterpart nirK and nosZI communities. Using structural equation modeling, we show that the overall microbial community composition and diversity played an important role in mediating the management effects on crop yield, genetic potential for N retention and N2O sink capacity. However, a trade-off between the genetic potential for N retention and N2O sink capacity was detected, indicating the challenges in managing grasslands in a sustainable way.Peer reviewe

    AV-Courant algebroids and generalized CR structures

    Full text link
    We construct a generalization of Courant algebroids which are classified by the third cohomology group H3(A,V)H^3(A,V), where AA is a Lie Algebroid, and VV is an AA-module. We see that both Courant algebroids and E1(M)\mathcal{E}^1(M) structures are examples of them. Finally we introduce generalized CR structures on a manifold, which are a generalization of generalized complex structures, and show that every CR structure and contact structure is an example of a generalized CR structure.Comment: 18 page

    Geometric Actions for D-Branes and M-Branes

    Get PDF
    New forms of Born-Infeld, D-brane and M theory five-brane actions are found which are quadratic in the abelian field strength. The gauge fields couple both to a background or induced metric and a new auxiliary metric, whose elimination reproduces the non-polynomial Born-Infeld action. This is similar to the introduction of an auxiliary metric to simplify the Nambu-Goto string action. This simplifies the quantisation and dualisation of the gauge fields.Comment: LaTeX, 9 pages, no figures. Minor corrections; version to appear in Physics Letters

    Three-dimensional topologically gauged N=6 ABJM type theories

    Full text link
    In this paper we construct the N=6\mathcal N=6 conformal supergravity in three dimensions from a set of Chern-Simons-like terms one for each of the graviton, gravitino, and R-symmetry gauge field and then couple this theory to the N=6\mathcal N=6 superconformal ABJM theory. In a first step part of the coupled Lagrangian for this topologically gauged ABJM theory is derived by demanding that all terms of third and second order in covariant derivatives cancel in the supersymmtry variation of the Lagrangian. To achieve this the transformation rules of the two separate sectors must be augmented by new terms. In a second step we analyze all terms in δL\delta L that are of first order in covariant derivatives. The cancelation of these terms require additional terms in the transformation rules as well as a number of new terms in the Lagrangian. As a final step we check that all remaining terms in δL\delta L which are bilinear in fermions cancel which means that the presented Lagrangian and transformation rules constitute the complete answer. In particular we find in the last step new terms in the scalar potential containing either one or no structure constant. The non-derivative higher fermion terms in δL\delta L that have not yet been completely analyzed are briefly discussed.Comment: 26 pages, v.2 minor corrections, comment on relation to chiral gravity added
    • …
    corecore