326 research outputs found
-meson in nuclear matter
The -nucleon (N) interactions are deduced from the heavy baryon
chiral perturbation theory up to the next-to-leading-order terms. Combining the
relativistic mean-field theory for nucleon system, we have studied the
in-medium properties of -meson. We find that all the elastic scattering
N interactions come from the next-to-leading-order terms. The N
sigma term is found to be about 280130 MeV. The off-shell terms are also
important to the in-medium properties of -meson. On application of the
latest determination of the N scattering length, the ratio of
-meson effective mass to its vacuum value is near , while
the optical potential is about MeV, at the normal nuclear density.Comment: 8 pages, 3 figures, to appear in PRC, many modification
Hyperspectral volumetric coherent anti-Stokes Raman scattering microscopy: quantitative volume determination and NaCl as non-resonant standard
In this work, we demonstrate quantitative volume determination of chemical components in three dimensions using hyperspectral coherent anti-Stokes Raman scattering microscopy, phase-corrected Kramers–Kronig retrieval of the coherent anti-Stokes Raman scattering susceptibility and factorization into concentration of chemical components. We investigate the influence of the refractive index contrast between water and polymer beads (polystyrene and polymethylmethacrylate), showing that it leads mainly to concentration errors, while the spectral error is less affected. The volume of polystyrene beads of sizes from 200 nm to 3 μm is determined with 10% relative error and 1% absolute error in the region of interest. We furthermore establish the use of sodium chloride as non-resonant reference material free of Raman-active vibrational resonances
Enhanced accretion rates of stars on Super-massive Black Holes by star-disk interactions in galactic nuclei
We investigate the dynamical interaction of a central star cluster
surrounding a super-massive black hole and a central accretion disk. The
dissipative force acting on stars in the disk leads to an enhanced mass flow
towards the super-massive black hole and to an asymmetry in the phase space
distribution due to the rotating accretion disk. The accretion disk is
considered as a stationary Keplerian rotating disk, which is vertically
extended in order to employ a fully self-consistent treatment of stellar
dynamics including the dissipative force originating from star-gas ram pressure
effects. The stellar system is treated with a direct high-accuracy N-body
integration code. A star-by-star representation, desirable in N-body
simulations, cannot be extended to real particle numbers yet. Hence, we
carefully discuss the scaling behavior of our model with regard to particle
number and tidal accretion radius. The main idea is to find a family of models
for which the ratio of two-body relaxation time and dissipation time (for
kinetic energy of stellar orbits) is constant, which then allows us to
extrapolate our results to real parameters of galactic nuclei. Our model is
derived from basic physical principles and as such it provides insight into the
role of physical processes in galactic nuclei, but it should be regarded as a
first step towards more realistic and more comprehensive simulations.
Nevertheless, the following conclusions appear to be robust: the star accretion
rate onto the accretion disk and subsequently onto the super-massive black hole
is enhanced by a significant factor compared to purely stellar dynamical
systems neglecting the disk. This process leads to enhanced fueling of central
disks in active galactic nuclei and to an enhanced rate of tidal stellar
disruptions. [Abridged]Comment: 17 pages, 6 figures (with 9 panels), 2 tables, accepted for
publication in Ap
Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle
Optical nanoantennas are a novel tool to investigate previously unattainable
dimensions in the nanocosmos. Just like their radio-frequency equivalents,
nanoantennas enhance the light-matter interaction in their feed gap. Antenna
enhancement of small signals promises to open a new regime in linear and
nonlinear spectroscopy on the nanoscale. Without antennas especially the
nonlinear spectroscopy of single nanoobjects is very demanding. Here, we
present for the first time antenna-enhanced ultrafast nonlinear optical
spectroscopy. In particular, we utilize the antenna to determine the nonlinear
transient absorption signal of a single gold nanoparticle caused by mechanical
breathing oscillations. We increase the signal amplitude by an order of
magnitude which is in good agreement with our analytical and numerical models.
Our method will find applications in linear and nonlinear spectroscopy of
nanoobjects, ranging from single protein binding events via nonlinear tensor
elements to the limits of continuum mechanics
Towards a Theory of Molecular Forces between Deformed Media
A macroscopic theory for the molecular or Casimir interaction of dielectric
materials with arbitrarily shaped surfaces is developed. The interaction is
generated by the quantum and thermal fluctuations of the electromagnetic field
which depend on the dielectric function of the materials. Using a path integral
approach for the electromagnetic gauge field, we derive an effective Gaussian
action which can be used to compute the force between the objects. No
assumptions about the independence of the shape and material dependent
contributions to the interaction are made. In the limiting case of flat
surfaces our approach yields a simple and compact derivation of the Lifshitz
theory for molecular forces. For ideal metals with arbitrarily deformed
surfaces the effective action can be calculated explicitly. For the general
case of deformed dielectric materials the applicability of perturbation theory
and numerical techniques to the evaluation of the force from the effective
action is discussed.Comment: 15 pages, 1 figur
Observation of the exceptional-point-enhanced Sagnac effect
Exceptional points (EPs) are special spectral degeneracies of non-Hermitian Hamiltonians that govern the dynamics of open systems. At an EP, two or more eigenvalues, and the corresponding eigenstates, coalesce. Recently, it was predicted that operation of an optical gyroscope near an EP results in improved response to rotations. However, the performance of such a system has not been examined experimentally. Here we introduce a precisely controllable physical system for the study of non-Hermitian physics and nonlinear optics in high-quality-factor microresonators. Because this system dissipatively couples counter-propagating lightwaves within the resonator, it also functions as a sensitive gyroscope for the measurement of rotations. We use our system to investigate the predicted EP-enhanced Sagnac effect and observe a four-fold increase in the Sagnac scale factor by directly measuring rotations applied to the resonator. The level of enhancement can be controlled by adjusting the system bias relative to the EP, and modelling results confirm the observed enhancement. Moreover, we characterize the sensitivity of the gyroscope near the EP. Besides verifying EP physics, this work is important for the understanding of optical gyroscopes
Optical anisotropy in vertically coupled quantum dots
We have studied the polarization of surface and edge-emitted photoluminescence (PL) from structures with vertically coupled In0.5Ga0.5As/GaAs quantum dots (QD’s) grown by molecular beam epitaxy. The PL polarization is found to be strongly dependent on the number of stacked layers. While single-layer and 3-layer structures show only a weak TE polarization, it is enhanced for 10-layer stacks. The 20-layer stacks additionally show a low-energy side-band of high TE polarization, which is attributed to laterally coupled QD’s forming after the growth of many layers by lateral coalescence of QD’s in the upper layers. While in the single, 3- and 10-layer stacks, both TE polarized PL components are stronger than the TM component, the [110] TE component is weaker than the TM component in the 20-layer stack. This polarization reversal is attributed to an increasing vertical coupling with increasing layer number due to increasing dot size
Transmembrane protein PERP is a component of tessellate junctions and of other junctional and non-junctional plasma membrane regions in diverse epithelial and epithelium-derived cells
Protein PERP (p53 apoptosis effector related to PMP-22) is a small (21.4 kDa) transmembrane polypeptide with an amino acid sequence indicative of a tetraspanin character. It is enriched in the plasma membrane and apparently contributes to cell-cell contacts. Hitherto, it has been reported to be exclusively a component of desmosomes of some stratified epithelia. However, by using a series of newly generated mono- and polyclonal antibodies, we show that protein PERP is not only present in all kinds of stratified epithelia but also occurs in simple, columnar, complex and transitional epithelia, in various types of squamous metaplasia and epithelium-derived tumors, in diverse epithelium-derived cell cultures and in myocardial tissue. Immunofluorescence and immunoelectron microscopy allow us to localize PERP predominantly in small intradesmosomal locations and in variously sized, junction-like peri- and interdesmosomal regions (“tessellate junctions”), mostly in mosaic or amalgamated combinations with other molecules believed, to date, to be exclusive components of tight and adherens junctions. In the heart, PERP is a major component of the composite junctions of the intercalated disks connecting cardiomyocytes. Finally, protein PERP is a cobblestone-like general component of special plasma membrane regions such as the bile canaliculi of liver and subapical-to-lateral zones of diverse columnar epithelia and upper urothelial cell layers. We discuss possible organizational and architectonic functions of protein PERP and its potential value as an immunohistochemical diagnostic marker
Dual/differential coherent anti-Stokes Raman scattering module for multiphoton microscopes with a femtosecond Ti:sapphire oscillator
In the last decade, coherent anti-Stokes Raman scattering (CARS) microscopy has emerged as a powerful multiphoton imaging technique offering label-free chemical sensitivity and high three-dimensional resolution. However, its widespread application in the life sciences has been hampered by the use of costly pulsed lasers, the existence of a nonresonant background requiring involved technical solutions for its efficient suppression, and the limited acquisition speed of multiplex techniques addressing several vibrational resonances, if improved chemical specificity is needed. We have recently reported a differential CARS technique (D-CARS), which simultaneously measures two vibrational frequencies, enhancing the chemical selectivity and sensitivity without introducing costly hardware, while maintaining fast acquisition. In this study, we demonstrate a compact, fully automated, cost-effective module, which integrates on hardware and software level with a commercial multiphoton microscope based on a single 100 fs Ti:Sapphire oscillator and enables D-CARS microscopy in a user-friendly format for applications in the life sciences
Rationalising the role of Keratin 9 as a biomarker for Alzheimer’s disease
Keratin 9 was recently identified as an important component of a biomarker panel which demonstrated a high diagnostic accuracy (87%) for Alzheimer’s disease (AD). Understanding how a protein which is predominantly expressed in palmoplantar epidermis is implicated in AD may shed new light on the mechanisms underlying the disease. Here we use immunoassays to examine blood plasma expression patterns of Keratin 9 and its relationship to other AD-associated proteins. We correlate this with the use of an in silico analysis tool VisANT to elucidate possible pathways through which the involvement of Keratin 9 may take place. We identify possible links with Dickkopf-1, a negative regulator of the wnt pathway, and propose that the abnormal expression of Keratin 9 in AD blood and cerebrospinal fluid may be a result of blood brain barrier dysregulation and disruption of the ubiquitin proteasome system. Our findings suggest that dysregulated Keratin 9 expression is a consequence of AD pathology but, as it interacts with a broad range of proteins, it may have other, as yet uncharacterized, downstream effects which could contribute to AD onset and progression
- …
