25 research outputs found

    The role of the central stellar cluster in active galactic nuclei. I. Semi-analytical model

    Get PDF
    The subject of the paper is the role of the massive stellar cluster in the activity phenomenon and in the structure of active galactic nuclei. We introduce a simple model of stellar dynamics in the internal part of the cluster, which allows us to include both the star-disk and the star-star interactions. It is shown that the properties of the distribution of stars in the vicinity of the black hole are determined both by the interaction of the stars with the accretion disk and by the pair gravitational and contact interaction between the stars. We calculate the distribution of stars in the central parts of the cluster and we discuss possible effects of stellar mass-loss due to the star-disk interaction. Finally, we study the implications of the central cluster for active galactic nuclei activity. We model the broad line region assuming that the gaseous wakes, following stars after each disk crossing, play the role of the broad line region clouds, and we calculate the corresponding line profiles. We also analyze the contribution of star-star and star-disk collisions to active galactic nuclei variability.Comment: Accepted for publication in Astronomy and Astrophysic

    Enhanced accretion rates of stars on Super-massive Black Holes by star-disk interactions in galactic nuclei

    Full text link
    We investigate the dynamical interaction of a central star cluster surrounding a super-massive black hole and a central accretion disk. The dissipative force acting on stars in the disk leads to an enhanced mass flow towards the super-massive black hole and to an asymmetry in the phase space distribution due to the rotating accretion disk. The accretion disk is considered as a stationary Keplerian rotating disk, which is vertically extended in order to employ a fully self-consistent treatment of stellar dynamics including the dissipative force originating from star-gas ram pressure effects. The stellar system is treated with a direct high-accuracy N-body integration code. A star-by-star representation, desirable in N-body simulations, cannot be extended to real particle numbers yet. Hence, we carefully discuss the scaling behavior of our model with regard to particle number and tidal accretion radius. The main idea is to find a family of models for which the ratio of two-body relaxation time and dissipation time (for kinetic energy of stellar orbits) is constant, which then allows us to extrapolate our results to real parameters of galactic nuclei. Our model is derived from basic physical principles and as such it provides insight into the role of physical processes in galactic nuclei, but it should be regarded as a first step towards more realistic and more comprehensive simulations. Nevertheless, the following conclusions appear to be robust: the star accretion rate onto the accretion disk and subsequently onto the super-massive black hole is enhanced by a significant factor compared to purely stellar dynamical systems neglecting the disk. This process leads to enhanced fueling of central disks in active galactic nuclei and to an enhanced rate of tidal stellar disruptions. [Abridged]Comment: 17 pages, 6 figures (with 9 panels), 2 tables, accepted for publication in Ap

    Numerical simulation of small perturbation on an accretion disk due to the collision of a star with the disk near the black hole

    Full text link
    In this paper, perturbations of an accretion disk by a star orbiting around a black hole are studied. We report on a numerical experiment, which has been carried out by using a parallel-machine code originally developed by D\"{o}nmez (2004). An initially steady state accretion disk near a non-rotating (Schwarzschild) black hole interacts with a "star", modeled as an initially circular region of increased density. Part of the disk is affected by the interaction. In some cases, a gap develops and shock wave propagates through the disk. We follow the evolution for order of one dynamical period and we show how the non-axisymetric density perturbation further evolves and moves downwards where the material of the disk and the star become eventually accreted onto the central body. When the star perturbs the steady state accretion disk, the disk around the black hole is destroyed by the effect of perturbation. The perturbed accretion disk creates a shock wave during the evolution and it loses angular momentum when the gas hits on the shock waves. Colliding gas with the shock wave is the one of the basic mechanism of emitting the XX-rays in the accretion disk. The series of supernovae occurring in the inner disk could entirely destroy the disk in that region which leaves a more massive black hole behind, at the center of galaxies.Comment: 20pages, 8 figures, accepted for publication in Astrophysics and Space Scienc

    Probing Broad Absorption Line Quasar Outflows: X-ray Insights

    Full text link
    Energetic outflows appear to occur in conjunction with active mass accretion onto supermassive black holes. These outflows are most readily observed in the approximately 10% of quasars with broad absorption lines, where the observer's line of sight passes through the wind. Until fairly recently, the paucity of X-ray data from these objects was notable, but now sensitive hard-band missions such as Chandra and XMM-Newton are routinely detecting broad absorption line quasars. The X-ray regime offers qualitatively new information for the understanding of these objects, and these new results must be taken into account in theoretical modeling of quasar winds.Comment: Submitted to Advances in Space Research for New X-ray Results from Clusters of Galaxies and Black Holes (Oct 2002; Houston, TX), eds. C. Done, E.M. Puchnarewicz, M.J. Ward. Requires cospar.sty (6 pgs, 5 figs

    Spin Evolution of Supermassive Black Holes and Galactic Nuclei

    Full text link
    The spin angular momentum S of a supermassive black hole (SBH) precesses due to torques from orbiting stars, and the stellar orbits precess due to dragging of inertial frames by the spinning hole. We solve the coupled post-Newtonian equations describing the joint evolution of S and the stellar angular momenta Lj, j = 1...N in spherical, rotating nuclear star clusters. In the absence of gravitational interactions between the stars, two evolutionary modes are found: (1) nearly uniform precession of S about the total angular momentum vector of the system; (2) damped precession, leading, in less than one precessional period, to alignment of S with the angular momentum of the rotating cluster. Beyond a certain distance from the SBH, the time scale for angular momentum changes due to gravitational encounters between the stars is shorter than spin-orbit precession times. We present a model, based on the Ornstein-Uhlenbeck equation, for the stochastic evolution of star clusters due to gravitational encounters and use it to evaluate the evolution of S in nuclei where changes in the Lj are due to frame dragging close to the SBH and to encounters farther out. Long-term evolution in this case is well described as uniform precession of the SBH about the cluster's rotational axis, with an increasingly important stochastic contribution when SBH masses are small. Spin precessional periods are predicted to be strongly dependent on nuclear properties, but typical values are 10-100 Myr for low-mass SBHs in dense nuclei, 100 Myr - 10 Gyr for intermediate mass SBHs, and > 10 Gyr for the most massive SBHs. We compare the evolution of SBH spins in stellar nuclei to the case of torquing by an inclined, gaseous accretion disk.Comment: 25 page

    On rapid migration and accretion within disks around supermassive black holes

    Full text link
    Galactic nuclei should contain a cluster of stars and compact objects in the vicinity of the central supermassive black hole due to stellar evolution, minor mergers and gravitational dynamical friction. By analogy with protoplanetary migration, nuclear cluster objects (NCOs) can migrate in the accretion disks that power active galactic nuclei by exchanging angular momentum with disk gas. Here we show that an individual NCO undergoing runaway outward migration comparable to Type III protoplanetary migration can generate an accretion rate corresponding to Seyfert AGN or quasar luminosities. Multiple migrating NCOs in an AGN disk can dominate traditional viscous disk accretion and at large disk radii, ensemble NCO migration and accretion could provide sufficient heating to prevent the gravitational instability from consuming disk gas in star formation. The magnitude and energy of the X-ray soft excess observed at ~0.1-1keV in Seyfert AGN could be explained by a small population of ~10^{2}-10^{3} accreting stellar mass black holes or a few ULXs. NCO migration and accretion in AGN disks are therefore extremely important mechanisms to add to realistic models of AGN disks.Comment: 6 pages, 2 figures, MNRAS Letters (accepted

    The associated system of HE2347-4342

    Full text link
    We present an analysis of the complex associated system of the high-redshift QSO HE2347-4342. Absorption features of HI, CIII, CIV, NV, and OVI with up to 16 components occur in the optical spectral range located up to 1500 km/s redwards from the emission line. Apparently, CIV and NV show the line locking effect. A quantivative analysis of the line distribution comparing simulated spectra with randomly distributed doublets reveals, however, no statistical evidence for its physical reality. Using photoionization calculations to emulate the observed ion column densities we constrain the quasar's spectral energy distribution. Absorbers in the velocity range of 200 - 600 km/s can be modelled successfully with a spectral index of alpha ~ -3 at energies higher than 3 - 4 Ryd, which is an energy distribution similar to the QSO continuum suggested by Mathews & Ferland (1987). The analysis of a group of high velocity absorbers (v > 1300 km/s) leads to a harder energy distribution. The large amount of helium (log N(HeII) > 16.3) associated with these absorbers implies that they are responsible for the observed absence of the proximity effect (Reimers et al. 1997). Clouds located more distant from the quasar may be shielded from the high energy part of the quasar continuum due to optically thick absorption shortward of 228 Angstrom by the high velocity absorbers. A group of absorbers with 900 < v < 1200 km/s, in particular a cloud at 1033 km/s, which has the most reliable column density measurements, can be modelled neither with photoionzation nor under the assumption of collisionally ionized gas.Comment: 11 pages, 8 figures, accepted by A&

    Matter Outflows from AGN: A Unifying Model

    Get PDF
    We discuss a self-consistent unified model of the matter outflows from AGNs based on a theoretical approach and involving data on AGN evolution and structure. The model includes a unified geometry, two-phase gas dynamics, radiation transfer, and absorption spectrum calculations in the UV and X-ray bands. We briefly discuss several questions about the mass sources of the flows, the covering factors, and the stability of the narrow absorption details.Comment: 6 figures, accepted for publication in Astrophysics and Space Scienc

    High-Ion Absorption in Seven GRB Host Galaxies at z=2-4: Evidence for both Circumburst Plasma and Outflowing Interstellar Gas

    Full text link
    (Abridged) We use VLT/UVES high-resolution optical spectroscopy of seven GRB afterglows at z_GRB>2 to investigate circumburst and interstellar plasma in the host galaxies. Our sample consists of GRBs 021004, 050730, 050820, 050922C, 060607, 071031, and 080310. Four of these spectra were taken in rapid-response mode, within 30 minutes of the Swift GRB detection. We identify several distinct categories of high-ion absorption at velocities close to z_GRB: (i) Strong high-ion components at z_GRB itself are always seen in OVI, CIV, and SiIV, and usually (in 6 of 7 cases) in NV. We discuss circumburst and interstellar models for the origin of this absorption. Using the non-detection of SIV* toward GRB 050730 together with a UV photo-excitation model, we place a lower limit of 400 pc on the distance of the SIV-bearing gas from the GRB. (ii) Complex, multi-component CIV and SiIV profiles extending over 100-400 km/s around z_GRB are observed in each spectrum; these velocity fields are similar to those measured in damped Lyman-alpha systems at similar redshifts, suggesting a galactic origin. (iii) Asymmetric, blueshifted, absorption-line wings covering 65-140 km/s are seen in the CIV, SiIV, and OVI profiles in 4 of the 7 spectra. The wing kinematics together with the observation that two wings show "Galactic" CIV/SiIV ratios suggest these features trace outflowing ISM gas in the GRB host galaxies. (iv) High-velocity (HV; 500-5000 km/s) components are detected in 6 of the 7 spectra. The HV components show diverse properties. In the cases of GRBs 071031 and 080310, both the ionization level (very high CIV/SiIV ratios and absence of neutral-phase absorption) and the kinematics of the HV components can be explained by Wolf-Rayet winds from the GRB progenitors.Comment: 20 pages, 9 figures (7 in color), accepted by A&A, updated with proof corrections including changes to Table

    On highly eccentric stellar trajectories interacting with a self-gravitating disc in Sgr A*

    Full text link
    We propose that Kozai's phenomenon is responsible for the long-term evolution of stellar orbits near a supermassive black hole. We pursue the idea that this process may be driven by a fossil accretion disc in the centre of our Galaxy, causing the gradual orbital decay of stellar trajectories, while setting some stars on highly elliptic orbits. We evolve model orbits that undergo repetitive transitions across the disc over the period of ~10^7 years. We assume that the disc mass is small compared to the central black hole, and its gravitational field comparatively weak, yet non-zero, and we set the present values of orbital parameters of the model star consistent with those reported for the S2 star in Sagittarius A*. We show how a model trajectory decays and circularizes, but at some point the mean eccentricity is substantially increased by Kozai's resonance. In consequence the orbital decay of highly eccentric orbits is accelerated. A combination of an axially symmetric gravitational field and dissipative environment can provide a mechanism explaining the origin of stars on highly eccentric orbits tightly bound to the central black hole. In the context of other S-stars, we can conclude that an acceptable mass of the disc (i.e., M_d<=1 percent of the black hole mass) is compatible with their surprisingly young age and small pericentre distances, provided these stars were formed at r<=10^5 gravitational radii.Comment: Accepted for publication in A&A; 9 pages, 6 figures. Revised version with minor language corrections (no change in content
    corecore