60 research outputs found

    Metallicity vs. Be phenomenon relation in the solar neighborhood

    Full text link
    Fast rotation seems to be the mayor factor to trigger the Be phenomenon. Surface fast rotation can be favored by initial formation conditions, such as abundance of metals. We have observed 118 Be stars up to the apparent magnitudes V=9 mag. Models of fast rotating atmospheres and evolutionary tracks were used to interpret the stellar spectra and to determine the stellar fundamental parameters. Since the studied stars are formed in regions that are separated enough to imply some non negligible gradient of galactic metallicity, we study the effects of possible incidence of this gradient on the nature as rotators of the studied stars.Comment: 3 pages ; to appear in the proceedings of the Sapporo meeting on active OB stars ; ASP Conference Series ; eds: S. Stefl, S. Owocki and A. Okazak

    A grid of Synthetic Spectra for Hot DA White Dwarfs and Its Application in Stellar Population Synthesis

    Full text link
    In this work we present a grid of LTE and non-LTE synthetic spectra of hot DA white dwarfs (WDs). In addition to its usefulness for the determination of fundamental stellar parameters of isolated WDs and in binaries, this grid will be of interest for the construction of theoretical libraries for stellar studies from integrated light. The spectral grid covers both a wide temperature and gravity range, with 17,000 K <= T_eff <= 100,000 K and 7.0 <= log(g) <= 9.5. The stellar models are built for pure hydrogen and the spectra cover a wavelength range from 900 A to 2.5 microns. Additionally, we derive synthetic HST/ACS, HST/WFC3, Bessel UBVRI and SDSS magnitudes. The grid was also used to model integrated spectral energy distributions of simple stellar populations and our modeling suggests that DAs might be detectable in ultraviolet bands for populations older than ~8 Gyr.Comment: to be published in The Astrophysical Journal Supplement Serie

    Achernar: Rapid Polarization Variability as Evidence of Photospheric and Circumstellar Activity

    Full text link
    We present the results of a high accuracy (σ≈0.005\sigma \approx 0.005%) polarization monitoring of the Be Star Achernar that was carried out between July 7th and November 5th, 2006. Our results indicate that, after a near quiescent phase from 1998 to 2002, Achernar is presently in an active phase and has built a circumstellar disk. We detect variations both in the polarization level and position angle in timescales as short as one hour and as long as several weeks. Detailed modeling of the observed polarization strongly suggests that the short-term variations originate from discrete mass ejection events which produce transient inhomogeneities in the inner disk. Long-term variations, on the other hand, can be explained by the formation of an inner ring following one or several mass ejection events.Comment: 16 pages, 5 figures, Accepted to Ap

    Evolution of the circumstellar disc of alpha Eri

    Full text link
    The Halpha line emission formation region in the circumstellar disc of alpha Eri is: a) extended with a steep outward matter density decline during low Hα\alpha emission phases; b) less extended with rather constant density distribution during the strong Halpha emission. The long-term variation of the Halpha emission has a 14-15 year cyclic B-Be phase transition. The disc formation time scales agree with the viscous decretion model. The time required for the disc dissipation is longer than expected from the viscous disc model.Comment: 3 pages ; to appear in the proceedings of the Sapporo meeting on active OB stars ; ASP Conference Series ; eds: S. Stefl, S. Owocki and A. Okazak

    A multispectral view of the periodic events in eta Carinae

    Full text link
    A full description of the 5.5-yr low excitation events in Eta Carinae is presented. We show that they are not as simple and brief as previously thought, but a combination of two components. The first, the 'slow variation' component, is revealed by slow changes in the ionization level of circumstellar matter across the whole cycle and is caused by gradual changes in the wind-wind collision shock-cone orientation, angular opening and gaseous content. The second, the 'collapse' component, is restricted to around the minimum, and is due to a temporary global collapse of the wind-wind collision shock. High energy photons (E > 16 eV) from the companion star are strongly shielded, leaving the Weigelt objects at low ionization state for >6 months. High energy phenomena are sensitive only to the 'collapse', low energy only to the 'slow variation' and intermediate energies to both components. Simple eclipses and mechanisms effective only near periastron (e.g., shell ejection or accretion onto the secondary star) cannot account for the whole 5.5-yr cycle. We find anti-correlated changes in the intensity and the radial velocity of P Cygni absorption profiles in FeII 6455 and HeI 7065 lines, indicating that the former is associated to the primary and the latter to the secondary star. We present a set of light curves representative of the whole spectrum, useful for monitoring the next event (2009 January 11).Comment: 16 pages, 7 EPS figures, accepted for publication on MNRA

    The periodicity of the η Carinae events

    Get PDF
    Extensive spectral observations of η Carinae over the last cycle, and particularly around the 2003.5 low-excitation event, have been obtained. The variability of both narrow and broad lines, when combined with data taken from two earlier cycles, reveal a common and well-defined period. We have combined the cycle lengths derived from the many lines in the optical spectrum with those from broad-band X-rays, optical and near-infrared observations, and obtained a period length of Ppres = 2022.7 ± 1.3 d. Spectroscopic data collected during the last 60 yr yield an average period of Pavg = 2020 ± 4 d, consistent with the present-day period. The period cannot have changed by more than ΔP/P = 0.0007 since 1948. This confirms the previous claims of a true, stable periodicity, and gives strong support to the binary scenario. We have used the disappearance of the narrow component of He I 6678 to define the epoch of the Cycle 11 minimum, T0 = JD 245 2819.8. The next event is predicted to occur on 2009 January 11 (±2 d). The dates for the start of the minimum in other spectral features and broad-bands are very close to this date, and have well-determined time-delays from the He I epoch.Facultad de Ciencias Astronómicas y Geofísica

    The periodicity of the η Carinae events

    Get PDF
    Extensive spectral observations of η Carinae over the last cycle, and particularly around the 2003.5 low-excitation event, have been obtained. The variability of both narrow and broad lines, when combined with data taken from two earlier cycles, reveal a common and well-defined period. We have combined the cycle lengths derived from the many lines in the optical spectrum with those from broad-band X-rays, optical and near-infrared observations, and obtained a period length of Ppres = 2022.7 ± 1.3 d. Spectroscopic data collected during the last 60 yr yield an average period of Pavg = 2020 ± 4 d, consistent with the present-day period. The period cannot have changed by more than ΔP/P = 0.0007 since 1948. This confirms the previous claims of a true, stable periodicity, and gives strong support to the binary scenario. We have used the disappearance of the narrow component of He I 6678 to define the epoch of the Cycle 11 minimum, T0 = JD 245 2819.8. The next event is predicted to occur on 2009 January 11 (±2 d). The dates for the start of the minimum in other spectral features and broad-bands are very close to this date, and have well-determined time-delays from the He I epoch.Facultad de Ciencias Astronómicas y Geofísica

    GASPS observations of Herbig Ae/Be stars with PACS/Herschel. The atomic and molecular content of their protoplanetary discs

    Get PDF
    We observed a sample of 20 representative Herbig Ae/Be stars and five A-type debris discs with PACS onboard of Herschel. The observations were done in spectroscopic mode, and cover far-IR lines of [OI], [CII], CO, CH+, H2O and OH. We have a [OI]63 micron detection rate of 100% for the Herbig Ae/Be and 0% for the debris discs. [OI]145 micron is only detected in 25%, CO J=18-17 in 45% (and less for higher J transitions) of the Herbig Ae/Be stars and for [CII] 157 micron, we often found spatially variable background contamination. We show the first detection of water in a Herbig Ae disc, HD 163296, which has a settled disc. Hydroxyl is detected as well in this disc. CH+, first seen in HD 100546, is now detected for the second time in a Herbig Ae star, HD 97048. We report fluxes for each line and use the observations as line diagnostics of the gas properties. Furthermore, we look for correlations between the strength of the emission lines and stellar or disc parameters, such as stellar luminosity, UV and X-ray flux, accretion rate, PAH band strength, and flaring. We find that the stellar UV flux is the dominant excitation mechanism of [OI]63 micron, with the highest line fluxes found in those objects with a large amount of flaring and greatest PAH strength. Neither the amount of accretion nor the X-ray luminosity has an influence on the line strength. We find correlations between the line flux of [OI]63 micron and [OI]145 micron, CO J = 18-17 and [OI]6300 \AA, and between the continuum flux at 63 micron and at 1.3 mm, while we find weak correlations between the line flux of [OI]63 micron and the PAH luminosity, the line flux of CO J = 3-2, the continuum flux at 63 micron, the stellar effective temperature and the Brgamma luminosity. (Abbreviated version)Comment: 20 pages, 29 figures, accepted by Astronomy and Astrophysic
    • …
    corecore