1,284 research outputs found

    American Journal of Education: retos y oportunidades en las ciencias translacionales y la zona gris de la publicación académica

    Get PDF
    American Journal of Education (AJE) es una de las once revistas más importantes en el campo de la educación y publica nuevos trabajos de investigación en un amplio espectro de disciplinas educativas. Con sede en la Pennsylvania State University, la revista trabaja con editores asociados de toda la nación y con un consejo asesor de académicos sénior. También cuenta con un foro online (AJE Forum) gestionado por el consejo editorial estudiantil. El mayor problema que afronta la revista es cómo difundir eficazmente la investigación revisada por pares para que llegue a un público amplio, incluidos gestores, responsables políticos, reformadores y educadores. Dadas las limitaciones de los recursos universitarios, la revista ha explorado nuevas vías para difundir información sobre sus artículos a través de las redes sociales, y continúa evaluando la mejor forma de analizar el impacto de los artículos publicados en contextos académicos y políticos.The American Journal of Education (AJE) is one of 11 core journals identified in the field of education and publishes new research across abroad range of educational disciplines. Located at Penn State, the journal is supported by associate editors from around the nation as well as an advisory board of senior scholars. The journal also supports an online forum (AJE Forum) that is managed by the student editorial board. The major issue facing the journal is how to effectively disseminate peer-reviewed research to a broad audience that includes administrators, policy makers, reform advocates and educators. Given the limitations of university resources, the journal has experimented with new ways to disseminate information about its articles via social media and continues to assess how best to monitor the impact of journal articles in academic and policy contexts

    Pathogenesis of HIV in the Central Nervous System

    Get PDF
    HIV can infect the brain and impair central nervous system (CNS) function. Combination antiretroviral therapy (cART) has not eradicated CNS complications. HIV-associated neurocognitive disorders (HAND) remain common despite cART, although attenuated in severity. This may result from a combination of factors including inadequate treatment of HIV reservoirs such as circulating monocytes and glia, decreased effectiveness of cART in CNS, concurrent illnesses, stimulant use, and factors associated with prescribed drugs, including antiretrovirals. This review highlights recent investigations of HIV-related CNS injury with emphasis on cART-era neuropathological mechanisms in the context of both US and international settings

    Chemokines in cerebrospinal fluid correlate with cerebral metabolite patterns in HIV-infected individuals

    Get PDF
    Chemokines influence HIV neuropathogenesis by affecting the HIV life cycle, trafficking of macrophages into the nervous system, glial activation, and neuronal signaling and repair processes; however, knowledge of their relationship to in vivo measures of cerebral injury is limited. The primary objective of this study was to determine the relationship between a panel of chemokines in cerebrospinal fluid (CSF) and cerebral metabolites measured by proton magnetic resonance spectroscopy (MRS) in a cohort of HIV-infected individuals. One hundred seventy-one stored CSF specimens were assayed from HIV-infected individuals who were enrolled in two ACTG studies that evaluated the relationship between neuropsychological performance and cerebral metabolites. Concentrations of six chemokines (fractalkine, IL-8, IP-10, MCP-1, MIP-1β, and SDF-1) were measured and compared with cerebral metabolites individually and as composite neuronal, basal ganglia, and inflammatory patterns. IP-10 and MCP-1 were the chemokines most strongly associated with individual cerebral metabolites. Specifically, (1) higher IP-10 levels correlated with lower N-acetyl aspartate (NAA)/creatine (Cr) ratios in the frontal white matter and higher MI/Cr ratios in all three brain regions considered and (2) higher MCP-1 levels correlated with lower NAA/Cr ratios in frontal white matter and the parietal cortex. IP-10, MCP-1, and IL-8 had the strongest associations with patterns of cerebral metabolites. In particular, higher levels of IP-10 correlated with lower neuronal pattern scores and higher basal ganglia and inflammatory pattern scores, the same pattern which has been associated with HIV-associated neurocognitive disorders (HAND). Subgroup analysis indicated that the effects of IP-10 and IL-8 were influenced by effective antiretroviral therapy and that memantine treatment may mitigate the neuronal effects of IP-10. This study supports the role of chemokines in HAND and the validity of MRS as an assessment tool. In particular, the findings identify relationships between the immune response—particularly an interferon-inducible chemokine, IP-10—and cerebral metabolites and suggest that antiretroviral therapy and memantine modify the impact of the immune response on neurons

    Reconstruction of the gravitational wave signal h(t)h(t) during the Virgo science runs and independent validation with a photon calibrator

    Full text link
    The Virgo detector is a kilometer-scale interferometer for gravitational wave detection located near Pisa (Italy). About 13 months of data were accumulated during four science runs (VSR1, VSR2, VSR3 and VSR4) between May 2007 and September 2011, with increasing sensitivity. In this paper, the method used to reconstruct, in the range 10 Hz-10 kHz, the gravitational wave strain time series h(t)h(t) from the detector signals is described. The standard consistency checks of the reconstruction are discussed and used to estimate the systematic uncertainties of the h(t)h(t) signal as a function of frequency. Finally, an independent setup, the photon calibrator, is described and used to validate the reconstructed h(t)h(t) signal and the associated uncertainties. The uncertainties of the h(t)h(t) time series are estimated to be 8% in amplitude. The uncertainty of the phase of h(t)h(t) is 50 mrad at 10 Hz with a frequency dependence following a delay of 8 μ\mus at high frequency. A bias lower than 4 μs4\,\mathrm{\mu s} and depending on the sky direction of the GW is also present.Comment: 35 pages, 16 figures. Accepted by CQ

    Virgo calibration and reconstruction of the gravitational wave strain during VSR1

    Get PDF
    Virgo is a kilometer-length interferometer for gravitational waves detection located near Pisa. Its first science run, VSR1, occured from May to October 2007. The aims of the calibration are to measure the detector sensitivity and to reconstruct the time series of the gravitational wave strain h(t). The absolute length calibration is based on an original non-linear reconstruction of the differential arm length variations in free swinging Michelson configurations. It uses the laser wavelength as length standard. This method is used to calibrate the frequency dependent response of the Virgo mirror actuators and derive the detector in-loop response and sensitivity within ~5%. The principle of the strain reconstruction is highlighted and the h(t) systematic errors are estimated. A photon calibrator is used to check the sign of h(t). The reconstructed h(t) during VSR1 is valid from 10 Hz up to 10 kHz with systematic errors estimated to 6% in amplitude. The phase error is estimated to be 70 mrad below 1.9 kHz and 6 micro-seconds above.Comment: 8 pages, 8 figures, proceedings of Amaldi 8 conference, to be published in Journal of Physics Conference Series (JPCS). Second release: correct typo

    Calibration and sensitivity of the Virgo detector during its second science run

    Full text link
    The Virgo detector is a kilometer-length interferometer for gravitational wave detection located near Pisa (Italy). During its second science run (VSR2) in 2009, six months of data were accumulated with a sensitivity close to its design. In this paper, the methods used to determine the parameters for sensitivity estimation and gravitational wave reconstruction are described. The main quantities to be calibrated are the frequency response of the mirror actuation and the sensing of the output power. Focus is also put on their absolute timing. The monitoring of the calibration data as well as the parameter estimation with independent techniques are discussed to provide an estimation of the calibration uncertainties. Finally, the estimation of the Virgo sensitivity in the frequency-domain is described and typical sensitivities measured during VSR2 are shown.Comment: 30 pages, 23 figures, 1 table. Published in Classical and Quantum Gravity (CQG), Corrigendum include

    The variable finesse locking technique

    Get PDF
    Virgo is a power recycled Michelson interferometer, with 3 km long Fabry-Perot cavities in the arms. The locking of the interferometer has been obtained with an original lock acquisition technique. The main idea is to lock the instrument away from its working point. Lock is obtained by misaligning the power recycling mirror and detuning the Michelson from the dark fringe. In this way, a good fraction of light escapes through the antisymmetric port and the power build-up inside the recycling cavity is extremely low. The benefit is that all the degrees of freedom are controlled when they are almost decoupled, and the linewidth of the recycling cavity is large. The interferometer is then adiabatically brought on to the dark fringe. This technique is referred to as variable finesse, since the recycling cavity is considered as a variable finesse Fabry-Perot. This technique has been widely tested and allows us to reach the dark fringe in few minutes, in an essentially deterministic way

    A Cross-correlation method to search for gravitational wave bursts with AURIGA and Virgo

    Full text link
    We present a method to search for transient GWs using a network of detectors with different spectral and directional sensitivities: the interferometer Virgo and the bar detector AURIGA. The data analysis method is based on the measurements of the correlated energy in the network by means of a weighted cross-correlation. To limit the computational load, this coherent analysis step is performed around time-frequency coincident triggers selected by an excess power event trigger generator tuned at low thresholds. The final selection of GW candidates is performed by a combined cut on the correlated energy and on the significance as measured by the event trigger generator. The method has been tested on one day of data of AURIGA and Virgo during September 2005. The outcomes are compared to the results of a stand-alone time-frequency coincidence search. We discuss the advantages and the limits of this approach, in view of a possible future joint search between AURIGA and one interferometric detector.Comment: 11 pages, 6 figures, submitted to CQG special issue for Amaldi 7 Proceeding

    Visual Function Assessment in Simulated Real-Life Situations in HIV-Infected Subjects

    Get PDF
    Visual function abnormalities are common in people living with HIV disease (PLWH) without retinitis, even after improvement in immune status. Abnormalities such as reduced contrast sensitivity, altered color vision, peripheral visual field loss, and electrophysiological changes are related to a combination of retinal dysfunctions, involving inner and outer retinal structures. The standard protocol for testing vision performance in clinical practice is the Early Treatment Diabetic Retinopathy Study (ETDRS) chart. However, this method poorly correlates with activities of daily living that require patients to assess visual stimuli in multiple light/contrast conditions, and with limited time. We utilized a novel interactive computer program (Central Vision Analyzer) to analyze vision performance in PLWH under a variety of light/contrast conditions that simulate stressful and real-world environments. The program tests vision in a time-dependent way that we believe better correlates with daily living activities than the non-timed ETDRS chart. We also aimed to correlate visual scores with retinal neuro-fiber layer thickness on optical coherence tomography. Here we show that visual acuity is more affected in PLWH in comparison to HIV-seronegative controls in varying contrast and luminance, especially if the nadir CD4+ T-cell count was lower than 100 cells/mm3. Visual impairment reflects the loss of retinal nerve fiber layer thickness especially of the temporal-inferior sector. In PLWH the ETDRS chart test led to better visual acuity compared to the Central Vision Analyzer equivalent test, likely because patients had indefinite time to guess the letters. This study confirms and strengthens the finding that visual function is affected in PLWH even in absence of retinitis, since we found that the HIV serostatus is the best predictor of visual loss. The Central Vision Analyzer may be useful in the diagnosis of subclinical HIV-associated visual loss in multiple light/contrast conditions, and may offer better understanding of this entity called "neuroretinal disorder"

    Astrophysically Triggered Searches for Gravitational Waves: Status and Prospects

    Get PDF
    In gravitational-wave detection, special emphasis is put onto searches that focus on cosmic events detected by other types of astrophysical observatories. The astrophysical triggers, e.g. from gamma-ray and X-ray satellites, optical telescopes and neutrino observatories, provide a trigger time for analyzing gravitational wave data coincident with the event. In certain cases the expected frequency range, source energetics, directional and progenitor information is also available. Beyond allowing the recognition of gravitational waveforms with amplitudes closer to the noise floor of the detector, these triggered searches should also lead to rich science results even before the onset of Advanced LIGO. In this paper we provide a broad review of LIGO's astrophysically triggered searches and the sources they target
    • …
    corecore