136 research outputs found
Population structure and conservation status of the white gorgonian Eunicella singularis (Esper, 1791) in Tunisian waters (Central Mediterranean)
The white gorgonian, Eunicella singularis, is thriving in Mediterranean hard-bottom communities; however, data regarding its distribution and ecology remain absent and insufficient, particularly in the southern Mediterranean Sea. In this study, the population structure and disturbance levels of the most common gorgonian in Tunisia were assessed for the first time. During two years (2015-2016), a total of 818 colonies of E. singularis were surveyed in five coastal sites, by scuba diving, between 7 to 40 m depth. Collected data included density, colony height, and extent of injury. Mean population density was 11.91 ± 7.42 colonies per m2 (mean ± SD). Mean and maximum colony heights were 16.49 ± 5.59 cm and 51 cm, respectively. Among populations, mean extent of tissue injury differed considerably, ranging from 12.47% to 58.88% and most affected colonies showed old necrosis. These data regarding the demographic structure and level of injuries are needed to provide insights into the conservation status of the Tunisian population of E. singularis. Indeed, data on the amount of necrosis could highlight the strength of the colonies’ exposure to mechanical impacts and are consequently crucial to study changes in their demographic structure over time. In fact, the size, structures, and the high level of tissue necrosis of the colonies suggest a low conservation status of the studied Tunisian populations
Collaborative Database to Track Mass Mortality Events in the Mediterranean Sea
Postdoctoral contract Juan de la Cierva [IJCI-2016-29329]Ministerio de Ciencia, Innovacion y Universidades PTA2015-10829-IInterreg Med Programme MPA-Adapt 1MED15_3.2_M2_337European Regional Development Fund - Foundation Albert II MonacoEuropean Union’s Horizon 2020Ministry of Education, Spain FPU15/0545
The impact of estimator choice: Disagreement in clustering solutions across K estimators for Bayesian analysis of population genetic structure across a wide range of empirical data sets
The software program STRUCTURE is one of the most cited tools for determining population structure. To infer the optimal number of clusters from STRUCTURE out- put, the ΔK method is often applied. However, a recent study relying on simulated microsatellite data suggested that this method has a downward bias in its estimation of K and is sensitive to uneven sampling. If this finding holds for empirical data sets, conclusions about the scale of gene flow may have to be revised for a large number of studies. To determine the impact of method choice, we applied recently described es- timators of K to re-estimate genetic structure in 41 empirical microsatellite data sets; 15 from a broad range of taxa and 26 from one phylogenetic group, coral. We com- pared alternative estimates of K (Puechmaille statistics) with traditional (ΔK and pos- terior probability) estimates and found widespread disagreement of estimators across data sets. Thus, one estimator alone is insufficient for determining the optimal num- ber of clusters; this was regardless of study organism or evenness of sampling scheme. Subsequent analysis of molecular variance (AMOVA) did not necessarily clarify which clustering solution was best. To better infer population structure, we suggest a com- bination of visual inspection of STRUCTURE plots and calculation of the alternative estimators at various thresholds in addition to ΔK. Disagreement between traditional and recent estimators may have important biological implications, such as previously unrecognized population structure, as was the case for many studies reanalysed here
Structure and biodiversity of coralligenous assemblages dominated by the precious red coral Corallium rubrum over broad spatial scales
Data on species diversity and structure in coralligenous outcrops dominated by Corallium rubrum are lacking. A hierarchical sampling including 3 localities and 9 sites covering more than 400 km of rocky coasts in NW Mediterranean, was designed to characterize the spatial variability of structure, composition and diversity of perennial species inhabiting coralligenous outcrops. We estimated species/taxa composition and abundance. Eight morpho-functional groups were defined according to their life span and growth to characterize the structural complexity of the outcrops. The species composition and structural complexity differed consistently across all spatial scales considered. The lowest and the highest variability were found among localities (separated by >200 km) and within sites (separated by 1-5 km), respectively supporting differences in diversity indices. The morpho-functional groups displayed a consistent spatial arrangement in terms of the number, size and shape of patches across study sites. These results contribute to filling the gap on the understanding of assemblage composition and structure and to build baselines to assess the response of this of this highly threatened habitat to anthropogenic disturbances
Climate change transforms the functional identity of Mediterranean coralligenous assemblages
We acknowledge the funding of the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019‐000928‐S). This research has also been partially funded by the HEATMED project (RTI2018‐095346‐B‐I00, MCIU/AEI/FEDER, UE), Interreg Med Programme (Projects MPA‐ENGAGE; 5216 | 5MED18_3.2_M23_007 and MPA‐Adapt, 1MED15_3.2_M2_337) 85% cofunded by the European Regional Development Fund, the MIMOSA project funded by the Foundation Prince Albert II Monaco, the Perfect project funded by the TOTAL Foundation, the Medchange project funded by the Agence Nationale pour la Recherche (ANR) and the European Union's Horizon 2020 research and innovation programme under grants agreements 689518 (MERCES) and SEP‐210597628 (FutureMARES). D.G.G. is supported by an FPU grant (FPU15/05457) from the Spanish Ministry of Education. CL gratefully acknowledges the financial support by ICREA under the ICREA Academia programme. VB is supported by the Templeton Foundation (grant #60501, ‘Putting the Extended Evolutionary Synthesis to the Test’). J‐B.L is supported by the strategic Funding UIDB/04423/2020 and UIDP/04423/2020. We thank M. Zabala, J.M Gili and A. Santín for their valuable help in trait definition. D.G.G, C.L, J‐B.L, N.B, P.L.S & J.G are part of the Marine Conservation research group (www.medrecover.org) (2017 SGR 1521) from the Generalitat de Catalunya.Quantifying changes in functional community structure driven by disturbance is critical to anticipate potential shifts in ecosystem functioning. However, how marine heatwaves (MHWs) affect the functional structure of temperate coral-dominated communities is poorly understood. Here, we used five long-term (> 10 years) records of Mediterranean coralligenous assemblages in a multi-taxa, trait-based analysis to investigate MHW-driven changes in functional structure. We show that, despite stability in functional richness (i.e. the range of species functional traits), MHW-impacted assemblages experienced long-term directional changes in functional identity (i.e. their dominant trait values). Declining traits included large sizes, long lifespans, arborescent morphologies, filter-feeding strategies or calcified skeletons. These traits, which were mostly supported by few sensitive and irreplaceable species from a single functional group (habitat-forming octocorals), disproportionally influence certain ecosystem functions (e.g. 3D-habitat provision). Hence, MHWs are leading to assemblages that are deficient in key functional traits, with likely consequences for the ecosystem functioning.Publisher PDFPeer reviewe
Re-shifting the ecological baseline for the overexploited Mediterranean red coral
Overexploitation leads to the ecological extinction of many oceanic species. The depletion of historical abundances of large animals, such as whales and sea turtles, is well known. However, the magnitude of the historical overfishing of exploited invertebrates is unclear. The lack of rigorous baseline data limits the implementation of efficient management and conservation plans in the marine realm. The precious Mediterranean red coral Corallium rubrum has been intensively exploited since antiquity for its use in jewellery. It shows dramatic signs of overexploitation, with no untouched populations known in shallow waters. Here, we report the discovery of an exceptional red coral population from a previously unexplored shallow underwater cave in Corsica (France) harbouring the largest biomass (by more than 100-fold) reported to date in the Mediterranean. Our findings challenge current assumptions on the pristine state of this emblematic species. Our results suggest that, before intense exploitation, red coral lived in relatively high-density populations with a large proportion of centuries-old colonies, even at very shallow depths. We call for the re-evaluation of the baseline for red coral and question the sustainability of the exploitation of a species that is still common but ecologically (functionally) extinct and in a trajectory of further decline
Gradients of genetic diversity and differentiation across the distribution range of a Mediterranean coral: Patterns, processes and conservation implications
Aim: How historical and contemporary eco-evolutionary processes shape the patterns of genetic diversity and þÿdifferentiation across species distribution range remain Focusing on the orange stony coral, Astroides calycularis, we (a) characterized the pattern of neutral genetic diversity across the distribution range; (b) gave insights into the underlying processes; and (c) discussed conservation implications with emphasis on a national park located on a hotspot of genetic diversity. Location: South Mediterranean Sea and Zembra National Park. Methods: We combined new data from 12 microsatellites in 13 populations located in the Centre and in the Western Periphery of the distribution range with a published dataset including 16 populations from the Western and Eastern Peripheries. We analysed the relationship among parameters of genetic diversity (He, Ar(g)) and structure (population-specific FST) and two measures of geographic peripherality. We compared two estimators of pairwise genetic structure (GST, DEST) across the distribution range. The evolutionary and demographic history of the populations following the Last Glacial Maximum was reconstructed using approximate Bayesian computations and maximum-likelihood analyses. We inferred the contemporary connectivity among populations from Zembra National Park and with the neighbouring area of Cap Bon. Results: We demonstrate a decrease in genetic diversity and an increase in genetic differentiation from the Centre to the Eastern and Western Peripheries of the distribution range. Populations from Zembra show the highest genetic diversity reported in the species. We identified a spillover effect towards Cap Bon. Main conclusions: The patterns of genetic diversity and þÿdifferentiation are most likely explained by the postglacial range expansion hypothesis rather than the þÿ central peripheral hypothesis. Enforcement of conservatio
A Fetal Brain magnetic resonance Acquisition Numerical phantom (FaBiAN)
Accurate characterization of in utero human brain maturation is critical as it involves complex and interconnected structural and functional processes that may influence health later in life. Magnetic resonance imaging is a powerful tool to investigate equivocal neurological patterns during fetal development. However, the number of acquisitions of satisfactory quality available in this cohort of sensitive subjects remains scarce, thus hindering the validation of advanced image processing techniques. Numerical phantoms can mitigate these limitations by providing a controlled environment with a known ground truth. In this work, we present FaBiAN, an open-source Fetal Brain magnetic resonance Acquisition Numerical phantom that simulates clinical T2-weighted fast spin echo sequences of the fetal brain. This unique tool is based on a general, flexible and realistic setup that includes stochastic fetal movements, thus providing images of the fetal brain throughout maturation comparable to clinical acquisitions. We demonstrate its value to evaluate the robustness and optimize the accuracy of an algorithm for super-resolution fetal brain magnetic resonance imaging from simulated motion-corrupted 2D low-resolution series compared to a synthetic high-resolution reference volume. We also show that the images generated can complement clinical datasets to support data-intensive deep learning methods for fetal brain tissue segmentation
Harvesting effects, recovery mechanisms, and management strategies for a long-lived and structural precious coral
Overexploitation is a major threat for the integrity of marine ecosystems. Understanding the ecological consequences of different extractive practices and the mechanisms underlying the recovery of populations is essential to ensure sustainable management plans. Precious corals are long-lived structural invertebrates, historically overfished, and their conservation is currently a worldwide concern. However, the processes underlying their recovery are poorly known. Here, we examined harvesting effects and recovery mechanisms of red coral Corallium rubrum by analyzing long-term photographic series taken on two populations that were harvested. We compared the relative importance of reproduction and re-growth as drivers of resilience. Harvesting heavily impacted coral populations causing large de- creases in biomass and strong size-class distribution shifts towards populations dominated by small colonies. At the end of the study (after 4 and 7 years) only partial recovery was ob- served. The observed general pattern of low recruitment and high mortality of new recruits demonstrated limited effects of reproduction on population recovery. Adversely, low mortali- ty of partially harvested adults and a large proportion of colonies showing new branches highlighted the importance of re-growth in the recovery process. The demographic projec- tions obtained through stochastic models confirmed that the recovery rates of C. rubrum can be strongly modulated depending on harvesting procedures. Thus, leaving the basal section of the colonies when harvesting to avoid total mortality largely enhances the resil- ience of C. rubrum populations and quickens their recovery. On the other hand, the high survival of harvested colonies and the significant biomass reduction indicated that abun- dance may not be an adequate metric to assess the conservation status of clonal organisms because it can underestimate harvesting effects. This study highlights the unsustainability of current harvesting practices of C. rubrum and provides urgently needed data to improve management practices that are still largely based on untested assumptions
- …