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Abstract 
The software program STRUCTURE is one of the most cited tools for determining 

population structure. To infer the optimal number of clusters from STRUCTURE output, the ΔK 

method is often applied. However, a recent study relying on simulated microsatellite data 

suggested that this method has a downward bias in its estimation of K and is sensitive to uneven 

sampling. If this finding holds for empirical datasets, conclusions about the scale of gene flow 

may have to be revised for a large number of studies. To determine the impact of method choice, 

we applied recently described estimators of K to re-estimate genetic structure in 41 empirical 

microsatellite datasets; 15 from a broad range of taxa and 26 focused on a diverse phylogenetic 

group, coral. We compared alternative estimates of K (Puechmaille statistics) with traditional 

(ΔK and posterior probability) estimates and found widespread disagreement of estimators across

datasets. Thus, one estimator alone is insufficient for determining the optimal number of clusters 

regardless of study organism or evenness of sampling scheme. Subsequent analysis of molecular 

variance (AMOVA) between clustering solutions did not necessarily clarify which solution was 

best. To better infer population structure, we suggest a combination of visual inspection of 

STRUCTURE plots and calculation of the alternative estimators at various thresholds in addition

to ΔK. Differences between estimators could reveal patterns with important biological 

implications, such as the potential for more population structure than previously estimated, as 

was the case for many studies reanalyzed here. 

Introduction
To date, one of the most cited tools to determine genetic population structure is the 

software program STRUCTURE (Pritchard, Stephens, & Donnelly, 2000). STRUCTURE is a 

free software package that uses multi-locus genotype data and a Bayesian clustering approach 
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relying on a Monte Carlo Markov Chain (MCMC) algorithm to infer population structure and 

assign individuals to populations based on their genotypes. The specification of models and the 

use of a random walk approach allows users to more easily incorporate prior information and 

account for uncertainty when clustering. In addition, STRUCTURE accepts common genetic 

marker types as input such as amplified fragment length polymorphisms (AFLPs), restriction 

fragment length polymorphisms (RFLPs), single nucleotide polymorphisms (SNPs), and 

microsatellites. In 2003, Falush et al. built upon STRUCTURE by developing models that allow 

inference of population structure with linked loci and correlated allele frequencies. Using the 

correlated allele frequencies method quickly became the gold standard for parsing samples into 

population clusters, because it assumes a level of non-independence. This model could uncover 

previously undetected correlation without impacting the results if the correlation did not exist 

(Falush, Stephens, & Pritchard, 2003; Porras-Hurtado et al., 2013).               

Important to the function of STRUCTURE is the identification of clusters, which 

represent the main genetic divisions or ‘subpopulations’ within a species (Kalinowski, 2011; 

Puechmaille, 2016). A common problem for clustering algorithms is to determine which 

clustering solution is the best (Hoban, Bertorelle, & Gaggiotti, 2012; Novembre, 2016). The K 

estimation method implemented in STRUCTURE is the posterior probability of the data for a 

given K (ln Pr(X|K) and it has been widely used for determining the optimal number of clusters 

and assigning individuals to clusters. However, determining the maximal value from the 

posterior probability distribution is difficult, as peaks are not always clear (Evanno, Regnaut, & 

Goudet, 2005; Pritchard et al., 2000). To complicate matters further, in cases in which 

STRUCTURE model assumptions are violated, such as the presence of hierarchical population 
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structure, clustering solutions may be affected and subject to over-interpretation (Lawson, van 

Dorp, & Falush, 2018).   

To solve this issue, Evanno et al. (2005) developed the ΔK statistic which is an ad hoc 

quantity related to the second order rate change of the log probability of data with respect to the 

number of clusters (Evanno et al., 2005). The ΔK statistic has since been a popular method for 

determining the number of clusters and has been cited over 12,000 times. Evanno et al. (2005) 

state that when the ΔK method was used on their simulated data, ΔK accurately estimated the 

true K, with the reservation that partial or uneven sampling could compromise the statistic from 

revealing the true number of clusters.

In addition, the ΔK method makes some biologically simplistic assumptions, which may 

not hold with real populations and their complex relationships. Specifically, Evanno et al. (2005)

used a hierarchical island model of gene flow which assumed that all groups of populations were 

equally different from each other (Kalinowski, 2011). Overlying complex biological 

relationships, and uneven sampling appears to affect the accuracy of the ΔK method, as well as 

the program STRUCTURE itself (Puechmaille, 2016; Toyama, Crochet, & Leblois, 2020). For 

instance, Kalinowski (2011) states that in some cases, STRUCTURE simply put all the 

individuals from the largest population sample in the same cluster. To remedy the uneven 

sampling problem, four alternative best K estimators, commonly referred to as Puechmaille 

statistics, were created (Puechmaille, 2016).

Puechmaille (2016) tested the robustness of ΔK when hierarchical levels of population 

structure were detected in simulated and empirical datasets and found that ΔK did not 

compensate for STRUCTURE’s inability to cluster subpopulations correctly, and thus ΔK could 

not reliably recover the true number of clusters. This is crucial because many empirical datasets 
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display hierarchical population structure and using the ΔK method without a proper hierarchical 

analysis could lead to a faulty conclusion of the number of clusters. In a meta-literature review of

1,264 studies that used ΔK, the authors found that very few studies performed the hierarchical 

analysis recommended by the authors of both ΔK and STRUCTURE to fully explore population 

subdivision (Janes et al., 2017). Janes et al. (2017) also found that over half of the studies that 

used ΔK concluded that the best K was 2. Further investigation of this issue revealed that ΔK was

biased towards 2 due to either the presence of hierarchical populations structure, or when 

structure is limited (K = 1) (Cullingham et al., 2020). This echoes previous work on best 

practices for running STRUCTURE in which authors advise paying special attention to cases of 

K = 1 due to the inability of the ΔK method to detect such a case (Gilbert et al., 2012).

Puechmaille (2016) tested the alternative K estimators using almost exclusively simulated

data modeled on microsatellite markers. Yet, simulated data may not reflect the complexities of 

empirical data, particularly in organisms with complex population structure due to life cycles or 

historical factors. Thus, with many available K estimation tools, a large-scale meta-analysis of 

empirical data comparing the functional outcome of estimator choice could assist researchers in 

methodology decisions. Previous work has evaluated the impact of different STRUCTURE 

parameters on determining the optimal K in empirical data (Funk et al., 2020), however, to date 

no study has evaluated the impact of choice of K estimator across a wide range of empirical 

datasets. If estimators largely disagree, greater emphasis on methodology decisions is needed and

a large number of population genetic studies may need to be revised. To provide a 

comprehensive analysis of the choice of method to determine the optimal K on the outcome of 

population genetic studies, we re-estimated genetic structure patterns based on a total of 41 

microsatellite datasets; 26 derived from corals which represent taxa that have diverse life 
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histories and 15 from a broad range of taxa. We tested Puechmaille’s (2016) alternative K 

estimators and compared the results to the outcomes of using traditional best K estimation 

methods (ΔK and posterior probability). Our objectives were: (1) determine the degree of 

disagreement between alternative K estimators and traditional K estimators in empirical datasets 

(ΔK and posterior probability), (2) analyze potential causes of any disagreement between K 

estimation methods across datasets (sampling scheme and study organism), and (3) determine the

best way to reconcile traditional K estimation methods with newer methods. 

Methods 
Dataset selection 

To determine whether study organism impacts disagreement between K estimation 

methods, two dataset collections were compiled (‘focused’ and ‘broad’). The ‘focused’ category 

was comprised of microsatellite studies on corals known to have complex population structures 

influenced by ocean currents. To test if findings in the ‘focused’ group are extendable to other 

systems, this was complemented by the ‘broad’ category of microsatellite studies on a wide 

range of other terrestrial, freshwater, and marine taxa. To compare the four alternative K 

estimators (Puechmaille 2016) to traditional methods (ΔK and ln Pr(X|K)), we first conducted a 

literature review of coral population genetics studies by searching the Web of Science using 

keyword combinations “coral population genetics” and “coral AND population genetics”. From 

these searches we assembled a database of coral microsatellite datasets to represent our focused 

study system. To assemble a database of broad representation of taxa, we performed a search on 

The Dryad Digital Repository using the keywords “microsatellite population genetic structure”. 

Studies based on single nucleotide polymorphism (SNP) data were excluded, as Puechmaille’s 
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(2016) tested the alternative estimators using only microsatellite data. Puechmaille (2016) states 

that further testing is necessary to confirm whether conclusions about the alternative estimators 

can be extended to SNP datasets. Further, since Puechmaille (2016) created these estimators to 

analyze output from the software program STRUCTURE (Falush et al., 2003), datasets were 

selected if they had been analyzed using STRUCTURE. Additionally, we selected datasets that 

met two criteria: loci were not found to be under selection and population structure was analyzed

using a minimum of five microsatellite loci. 

 

Broad Datasets
The ‘broad’ category included 15 studies, each targeting a different species from a wide 

range of taxonomic groups including plants and animals of marine, freshwater, and terrestrial 

habitats. The sample size across these datasets ranged from 73 to 913 individuals, and thus, 

sampling effort differed among studies (See Supplementary Table 1). This group serves to 

provide a benchmark against which to compare the datasets focused on one phylogenetic group 

outlined below. 

Focused Datasets
The ‘focused’ category included 26 datasets targeting 20 coral species. The sample size 

of datasets in the ‘focused’ category also varied (64 to 2,014 individuals; Supplementary Table 

1). Corals were specifically chosen to represent the ‘focused’ category of datasets for the reasons

outlined below.

STRUCTURE and the ΔK method have been widely applied to the detection of 

population genetic structure in marine organisms with planktonic dispersal and complex life 

histories (Palumbi, 2003). Corals are chief among them (Baums, Boulay, Polato, & Hellberg, 

2012; Ledoux et al., 2015; Nakajima et al., 2017; Ruiz-Ramos, Saunders, Fisher, & Baums, 
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2015). Corals’ diverse life histories include asexual and sexual reproductive modes for some 

species (Baird, Guest, & Willis, 2009). STRUCTURE plots often show complex patterns and 

determination of the best K results can be problematic in such cases (Lukoschek, Riginos, & van 

Oppen, 2016; Warner, van Oppen, & Willis, 2015). It is unclear, however, whether the complex 

patterns are the result of biological phenomena such as unidentified cryptic species (Boulay, 

Hellberg, Cortés, & Baums, 2013), violations of the corresponding model assumptions such as 

non-overlapping generation times (Potts, 1984), extensive inbreeding (Richards & Oppen, 2012),

isolation by distance (Aurelle & Ledoux, 2013), lack of strong differentiation, or poorly 

performing genetic markers (i.e. null alleles) (Dubé, Planes, Zhou, Berteaux-Lecellier, & 

Boissin, 2017).       

Focusing on one phylogenetic group containing diverse life histories allows for testing 

across a wide range of traits, while still preserving comparability due to shared evolutionary 

history. The complexity and diversity of corals makes for an excellent focused taxonomic group 

with which to test the performance of best K estimators under less simplistic study systems than 

those often represented by simulated data. In addition to a more general testing of a broad range 

of taxa, we included a separate analysis of this particularly complex study system to tease apart 

the nuances of how each K estimator may be impacted by biological intricacies found in 

empirical data.  

Population structure analysis 

To assess the performance of each estimator on empirical data, we analyzed each 

microsatellite dataset using ParallelStructure (Besnier & Glover, 2013).  To ensure 

comparability of the results, we ran our analysis with the STRUCTURE parameters described in 
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the corresponding study. All studies considered each repeated multi-locus genotype only once 

before running STRUCTURE. In the ‘focused’ category, all 26 studies ran STRUCTURE under 

the admixture model and 24 studies used the correlated allele frequencies model. Seventeen of 

the studies used a location prior (Hubisz, Falush, Stephens, & Pritchard, 2009) to assist with 

clustering. In the ‘broad’ category, all 15 studies used the admixture model, 14 studies used the 

correlated allele frequencies model, and three were run using a location prior. Complete details 

for the parameter settings of each dataset can be found in Supplementary materials on Dryad 

(DOI pending). 

First, we calculated the ΔK and the posterior probability (which relies on ln Pr(X|K)) 

estimate using Puechmaille’s (2016) R script Kestimator V-1.13.  Then, we estimated the best K 

according to Puechmaille’s four alternative K estimators using the same R script (Puechmaille, 

2016): the MaxMedK (the maximum of medians), the MaxMeaK (the maximum of means), the 

MedMedK (the median of medians), and the MedMeaK (the median of means). Each of the four 

alternative estimators were calculated at four membership coefficient thresholds (0.5, 0.6, 0.7, 

0.8) according to the recommended default settings of the script. These threshold values are 

based upon the finding from Guillot, Estoup, Mortier, and Cosson (2005) which defined a 

spurious cluster as one in which no individuals have a membership coefficient >0.5. However, 

Puechmaille (2016) extended this membership threshold by increasing the stringency in steps of 

0.1 until reaching a threshold of 0.8. The proportion of cases in which each alternative K 

estimate agreed with the ΔK estimate was calculated (See Supplementary Table 1). An ANOVA 

was performed on a linear mixed model fit by residual maximum likelihood (REML) to 

determine the effect of threshold on disagreement with ΔK. Following the same method, each 

Puechmaille statistic was compared to the posterior probability estimate based on ln Pr(X|K) 
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described in (Pritchard et al., 2000). CLUMPAK (Kopelman, Mayzel, Jakobsson, Rosenberg, & 

Mayrose, 2015) was used to visualize STRUCTURE plots.

In addition, to assess support for clustering solutions, analysis of molecular variance 

(AMOVA) (Excoffier, Smouse, & Quattro, 1992) was conducted using Poppr v2.9.1 (Kamvar, 

Tabima, & Grünwald, 2014) with 999 permutations for a randomly selected subset of two 

datasets from each category (‘focused’ and ‘broad’) in which all alternative estimators disagreed 

with both the ΔK and the ln Pr(X|K). For each of the four datasets, individuals were assigned by 

majority rule according to their membership coefficients into the number of clusters identified by

the different K estimation methods (the alternative estimators, the ΔK, and the ln Pr(X|K)). 

AMOVA was run on each clustering solution for each dataset, with only two exceptions. For the 

dataset baums_et_al_2010_1 (Baums, Johnson, Devlin-Durante, & Miller, 2010), all alternative 

estimators found K =1. AMOVA requires >1 group in order to compare variation between 

groups, thus, it was not run on a clustering of individuals into one singular population. For the 

dataset perez_et_al_2014 (Perez et al., 2014), majority rule assigned individuals to only 11 

clusters, with no single individual having a membership coefficient high enough for assignment 

to a twelfth cluster. Thus, K = 12 as identified by the posterior probability method was excluded 

from AMOVA. 

 

Assessment of sampling strategy 

The program STRUCTURE may not reliably estimate the true number of clusters when 

sampling is uneven (Puechmaille, 2016). Consequently, we calculated sampling evenness scores 

for each dataset to test whether the alternative estimators perform differently than traditional 

methods in situations of uneven sampling. We calculated the evenness score, E, for each data set 
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using Shannon’s Diversity Index (Equation 1). The number of multi-locus genotypes (MLGs) 

per sampling site was used to calculate the evenness of each dataset with respect to sampling 

scheme. 

 

The result of the equation below yields a score from 0 to 1 where higher scores indicate a 

more even sampling scheme (See Supplementary Table 4 for calculations).  

 Equation 1

E=−1∗∑
(

N isite

N itotal

∗ln
N isite

N itotal
)

ln N itotal

Where E = eveneness, Nisite = number of MLGs at site, and Nitotal = total number of MLGs.

Next, we tested if there was a relationship between the proportion of the new K 

estimators that were congruent with each traditional method (ΔK and ln Pr(X|K)) and the 

evenness of the sampling strategy. To do so, we performed a linear regression with sampling 

evenness as a predictor for proportion agreement. 

Results 
Comparison of K estimator performances: Focused category      

For each dataset in the ‘focused’ category, 16 estimates of K were calculated from the R 

script Kestimator V-1.1 (the four alternative K estimators, each at four membership thresholds). 

The script also calculated the traditional ΔK and the posterior probability estimates. The 

proportion of these 16 alternative K estimators that were congruent with the ΔK method varied 

across studies. The relative frequency of coral studies in which less than 20% of the 16 new K 
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estimators agreed with the ΔK estimate was 50% (Fig. 1A). Additionally, most (62%) of the 

studies had less than 50% agreement with ΔK.  

 The alternative K estimators tended to return higher values of K than the ΔK method, 

with only two exceptions. On average, the MaxMeaK and the MedMeaK estimates, each at a 

membership threshold of 0.8, returned lower values of K than the ΔK method (Fig. 2A). In the 

empirical ‘focused’ category datasets we analyzed here, lower membership coefficient thresholds

led to a higher magnitude of disagreement from ΔK across all four new estimators (Fig. 3). The 

effect of threshold was significant on the disagreement from ΔK according to ANOVA on a 

linear mixed model fit by REML (f-value = 4.348; p = 0.005). The effect of estimator, however, 

was not significant (f-value = 0.0998; p = 0.96). The combined effect of threshold and estimator 

was also not significant (f-value = 0.2244; p = 0.991). Notably, estimators based on the median 

(the MaxMedK and the MedMedK) tended to disagree with ΔK by more than those based on the 

mean (the MaxMeaK and the MedMeaK, Fig. 2A). Unsurprisingly, the estimators that use the 

maximum number of clusters in their calculations of the best K (the MaxMeaK and the 

MaxMedK), as opposed to the median, tended to disagree with ΔK by a higher magnitude (Fig. 

2A).  

In fourteen of the 26 coral datasets, less than 20% of the alternative estimates of K agreed

with the posterior probability estimate (Fig. 1B). However, on average, the alternative 

Puechmaille statistics returned lower estimates of K than the posterior probability method (Fig. 

2B) in the ‘focused’ category datasets. This was not the case with ΔK.

Comparison of K estimator performances: Broad category   

Nearly all of the patterns present in the ‘focused’ dataset analysis were mirrored in the 

‘broad’ dataset category analysis. Nine of the datasets in the ‘broad’ category had lower than 
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20% proportion agreement between the alternative Puechmaille statistics and the ΔK estimate 

(Fig. 1C). Additionally, on average, all alternative K estimators were higher than the ΔK estimate

regardless of threshold (Fig 2C). 

Proportion agreement between the posterior probability estimate and the 

alternative statistics was similarly low, with 11 out of the 15 ‘broad’ category datasets showing 

less than 20% proportion agreement (Fig. 1D). In comparison to the posterior probability 

estimate, the Puechmaille statistics resulted in lower estimates of K on average (Fig. 2D)—again,

consistent with the trend present in the ‘focused’ category of datasets (Fig. 2B). As in the 

‘focused’ datasets, lower membership coefficient thresholds led to a higher magnitude of 

disagreement from ΔK (Fig. 3).

Influence of sampling effort on K estimates: Focused category  

In the coral datasets, we found no significant relationship between sampling evenness and

the proportion of alternative K estimators that agree with the ΔK estimator (Fig. 4A) or the 

posterior probability (Fig. 4B). We compared sampling evenness and proportion agreement with 

ΔK using a linear and a polynomial model. However, neither resulted in a significant best fit 

(linear: R2 = 0.025, p =0.444; polynomial: R2 = 0.137, p = 0.070). To account for differences in 

sample size, we weighted each point in the plot accordingly, but the relationship remained 

insignificant (See Supplementary Figure 1).  Similarly, under a linear model, there was no 

significant relationship between proportion agreement of the alternative estimators and the 

posterior probability (Fig. 4B; R2 = 0.116, p = 0.088).
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Influence of sampling effort on K estimates: Broad category

Echoing the trends found in the ‘focused’ category, the 15 datasets included in the 

‘broad’ category also returned no significant relationship between sampling evenness and 

proportion agreement for either the ΔK estimator (Fig. 4C; R2 = 0.231, p = 0.070) or the posterior

probability (Fig. 4D; R2 = 0.10, p = 0.258) under a linear model. Each dataset was weighted by 

sample size for all tests. 

Additionally, we visualized the STRUCTURE plots for the Perez et al. (2014) Testudo 

hermanni dataset as an example with a relatively low evenness score (E=0.84, See 

Supplementary Table 1). The reanalysis yielded complete agreement between the Puechmaille 

statistics that contrasted with published findings using traditional methods (ΔK and ln Pr(X|K)). 

The authors reported a K = 5 (Fig. 5A), however, alternative estimators reported a K = 7 (Fig. 

5B).

Precision of Puechmaille estimates

Across all 41 datasets, the 16 Puechmaille estimates most commonly offered two (13/41 

datasets) or one (11/41 datasets) K estimate(s) (See Supplementary Table 1). In 75.6% of cases, 

the range of solutions offered by the Puechmaille estimators was ≤ 3. The largest range of K 

estimates provided by the Puechmaille statistics was 6 (1/41 datasets) and was found in only one 

dataset, Kurita_et_al_2014.

Analysis of molecular variance 

From the ‘broad’ category, the datasets kim_et_al_2017 (Kim et al., 2017) and perez_et_al_2013

(Perez et al., 2014) were randomly selected. From the ‘focused’ category, datasets 

baums_et_al_2010_1 (Baums et al., 2010) and rippe_et_al_2017 (Rippe et al., 2017) were 
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randomly selected.  K estimation for each dataset included a range of K values each supported by

different K estimation methods (Table 1).  Across all datasets and all clustering solutions, the 

majority of the variation was explained by differences within samples (Table 2). Additionally, 

the proportion of variation across all strata levels (between clusters, between samples within 

clusters, and within samples) were significant (p < 0.01 in all cases; Supplementary Table 5) 

across all datasets and clustering solutions. The magnitude of the proportion of variation 

explained by differences between clusters varied by dataset (Table 2). However, a notable trend 

found in all clustering solutions across all datasets, was the slight increase in the magnitude of 

the proportion of variation attributed to differences between clusters with an increase in K (Table

2). 

Discussion
Accurate characterizations of population genetic structure are at the core of eco-evolutionary

studies. Knowledge of population genetic structure enables inferences about the ecological and 

evolutionary dynamics of a species such as the scale of dispersal, the breeding system, and 

demographic history (Bohonak, 1999; Dillane et al., 2008; Les, 1988). The development of cost-

effective molecular markers for non-model organisms combined with the adoption of Bayesian 

methods to detect even weak signals of population genetic structure has propelled the field 

forward (Baums, Miller, & Hellberg, 2005; Garris, Tai, Coburn, Kresovich, & McCouch, 2005; 

Latch, Dharmarajan, Glaubitz, & Rhodes, 2006). Yet, especially in non-model organisms, the 

determination of the best solution among the tested number of clusters in a Bayesian model  can 

be difficult. Here, we report that the more recently developed best K estimators (Puechmaille, 

2016) suggest more population genetic structure across the majority of empirical ‘focused’ coral 

microsatellite datasets tested compared to the most popular K estimation method, ΔK estimator. 
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In contrast, the alternative estimators suggested less genetic structure than the posterior 

probability (ln Pr(X|K)). These patterns hold when extended to a broad group of taxa, and results

agree with a previous study using simulated datasets (Puechmaille, 2016). Even sampling effort 

among populations is expected to lead to more accurate determination of best K and yet we 

found no significant relationship between sampling evenness and proportion agreement in the 

empirical data. 

Comparison to ΔK

Because we used the same parameters for STRUCTURE modeling that were used in the 

original studies, if there was hierarchy among clusters present, it remained intact. In other words,

genotypes in the original and in our reanalysis were always split between the first two clusters in 

the same way, and then were assigned to the next cluster in the same way, and so forth for each 

higher number of K. This design allowed us to compare the solution suggested by the alternative 

K estimators to the results of the original studies. Alternative estimators agreed with the ΔK 

method across thresholds only when the best K was one or two (‘focused’ category: five out of 

20 species, ‘broad’ category: one out of 15 species, Supplementary Table 1). In most other cases,

alternative K estimators suggested that species may have more pronounced population structure 

than previously thought. In the ‘focused’ dataset category, 11 out of 20 species of varying habitat

type and study design displayed this phenomenon. In the ‘broad’ category, in ten out of 15 

studies alternative K estimators returned higher K solutions. Thus, across a wide range of taxa, 

the alternative K estimators indicated more population genetic structure than the ΔK method.

One notable case where we found evidence for more pronounced population structure was in

the ‘focused’ category dataset corresponding to the coral Porites lobata (Baums et al., 2012). 
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Initially, the ΔK method returned a best K = 5. Porites lobata from the Eastern Tropical Pacific 

were distinct from colonies from the central Pacific and Hawaii (Baums et al., 2012). Within 

Hawaii, there existed three co-occurring clusters that remained distinct from the remainder of 

central Pacific clusters. Another clustering algorithm, GENELAND (Guillot et al., 2005), 

returned a best K of seven with the possibility of an additional cluster being split in two, yielding

nine clusters in total (Baums et al., 2012). Upon reanalysis with the alternative K estimators, the 

clear majority (14/16 estimators) pointed to a best K between seven and nine. One estimator 

agreed with ΔK and another reported a lower estimate of K = 4. The study’s main conclusion that

there is a lack of geneflow across the eastern pacific barrier was upheld (see also (Wood et al., 

2016)), but our reanalysis suggested additional population structure in the central Pacific with 

putative conservation implications at the regional scale. 

Conversely, in some select cases the ΔK estimate was higher than the alternative estimates. 

One such case in the ‘focused’ category was the dataset corresponding to the coral Acropora 

digitifera (Nakajima, Nishikawa, Iguchi, & Sakai, 2012). Though the ΔK estimate returned a best

K of 2, the authors found evidence to suggest there was only one population. ΔK is known to be 

unable to report when the best K is 1 and instead most often reports K = 2 (Cullingham et al., 

2020). However, the alternative Puechmaille statistics identified the best K = 1, except for those 

at the lowest (0.5) threshold. This same phenomenon can be found in the ‘broad’ category of 

datasets in the New Zealand Sea Lion, Phocarctos hookeri (Osborne et al., 2016). Again, here 

the ΔK estimate suggested two populations. However, Osborne et al. (2016) found weak 

population differentiation with FST values low enough to suggest no population structure and 

concluded that the result was more consistent with one population of individuals living in 

familial clusters. All of the alternative Puechmaille statistics again identified a best K of 1, 
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except those at the lowest threshold. This highlights the benefit to calculating these alternative 

statistics, while considering a range of thresholds. In adding to the recommendations by 

Cullingham et al., 2020 for determining when K = 2, we propose using the alternative estimators 

to help determine the level of support. 

In four cases within the ‘focused’ category, the alternative estimators showed little 

agreement amongst themselves and with ΔK in their best K solutions (Supplementary Table 1). 

We suggest that difficulties in determining the best K can arise from hidden genetic diversity in 

the investigated species (Hajibabaei, Singer, Hebert, & Hickey, 2007; Hebert, Penton, Burns, 

Janzen, & Hallwachs, 2004). Seriatopora hystrix had a wide spread of best K estimates with ΔK 

suggesting K = 3. The authors conducted a hierarchical analysis investigating all three clusters 

further. Clusters were grouped based on regional scales of clustering and five major genetic 

clusters were distinguished. However, reanalysis with new estimators suggested a minimum K = 

4 and a maximum K = 9 (Supplementary Table 1). The authors mention that cryptic species may 

have masked the true population connectivity signals, further investigation of which may be 

warranted based on our reanalysis of population structure. Corals hybridize frequently and the 

speciation process in this group may follow a pattern of reticulate evolution and thus cryptic 

lineages at all taxonomic levels are expected to be common (Kenyon, 1997; Veron, 1995; 

Vollmer & Palumbi, 2002; Willis, van Oppen, Miller, Vollmer, & Ayre, 2006).

In the ‘broad’ category, one case in which all alternative estimators agreed with one another,

but disagreed with ΔK occurred in a dataset for Testudo hermanni, an endangered tortoise 

species in Mediterranean (Perez et al., 2014). All alternative Puechmaille statistics indicated K = 

7, while the posterior probability indicated K = 12. However, the ΔK estimate found the best K = 

2.  Perez et al. (2014) used STRUCTURE and GENELAND (Guillot et al., 2005) to draw their 
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conclusions about population structure in this study. Using STRUCTURE, the authors found 

evidence for K = 2 and K = 5 by employing several traditional K estimation methods (ΔK and ln 

Pr(X|K)). However, GENELAND analysis indicated a best K = 6. Curiously, under K = 5, 

samples from geographically distant localities (Spain, Sicily and Corsica) clustered together 

according to STRUCTURE (Fig. 5A). The authors assert that massive translocations between 

Spain, Sicily, and Corsica are unlikely for this sedentary species of tortoise and instead suggest 

that prehistoric events could explain the admixture (Perez et al., 2014). However, the alternative 

estimators suggest K = 7 (Fig. 5B). At K = 7, Spain, Sicily and Corsica contain distinct 

population clusters, as does the region of Macedonia (MAC). Previously, MAC clustered 

together with the Bosco Mesola population (BM) in the K = 5 solution (Fig. 5A) and Perez et al. 

(2014) report that it clustered with Greece (GR) in the GENELAND analysis. Though the true K 

can’t be known, inclusion of the alternative estimators may have provided helpful insight in 

parsing the different solutions between GENELAND and STRUCTURE in this study. 

Comparison to Posterior Probability

In both the ‘focused’ and the ‘broad’ categories, the posterior probability method yielded 

higher estimates of K than the alternative estimators and the ΔK method. This result could be due

to the fact that ln Pr(X|K), the basis for calculating the posterior probability according to Bayes 

rule, is known to be sensitive to the STRUCTURE model which allows for allele frequencies to 

be correlated between subpopulations (Falush et al., 2003). The STRUCTURE manual 

recommends that default settings should include allowing for correlated allele frequencies, and 

indeed most (38/41) datasets re-analyzed here, regardless of category, followed this 

recommendation. However, Falush et al. (2003) find that this could result in a higher risk of 
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overestimating K compared to the independent allele frequencies model. Since the alternative 

estimates of K are lower, on average, than the estimates calculated by the posterior probability 

method, it is possible that the Puechmaille statistics are less sensitive to such deviations in model

assumptions. This corroborates Puechmaille’s (2016) simulation study, which exclusively used 

the correlated allele frequencies model, showing that the posterior probability method 

overestimated the true K. 

Analysis of molecular variance

As the true K cannot be known in empirical data, we applied analysis of molecular 

variance (AMOVA) to a subset of datasets to evaluate its use as a method for determining which 

clustering solution was most supported. Datasets in which there was full disagreement between 

the Puechmaille statistics and both traditional K estimation methods were selected, as these cases

are the most difficult to interpret and additional analysis is warranted to determine the best 

clustering solution. Previous work has pointed out that it may be inappropriate to test the 

significance of AMOVA results on STRUCTURE clustering solutions (despite this being a 

common practice) (Meirmans, 2015). However, Meirmans (2015) indicate that reporting FST 

values is perfectly acceptable. With the expectation that the magnitude of significant variance 

explained by differences between clusters should be maximized in the best solution, we 

compared AMOVA results across clustering solutions for each dataset. Perhaps not 

unexpectedly, we noted that across datasets, the proportion of variance explained by differences 

between clusters increased slightly with increasing number of clusters, K (Table 2). This finding 

is similar to the results of a recent simulation-based study which found that the magnitude of ΔK 

was correlated with FST, with higher values of ΔK having more supported population structure 
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(Cullingham et al., 2020). It may well be that the magnitude of variance explained is simply 

always maximized at the highest value of K. This could be the case if increasing the number of 

model parameters by adding more clusters increases the distance between clusters. Thus, a 

simulation study is necessary to assess whether AMOVA can assist with identifying the best 

clustering solution.

Evenness Assessment

Since STRUCTURE’s inception, Evanno (2005) and others have warned users that uneven 

sampling across strata may influence the accuracy of determining the best K (Evanno et al., 

2005; Kalinowski, 2011; Puechmaille, 2016). In fact, previous work has recommended 

modifying alpha values when running STRUCTURE to address this (Wang, 2017). Because 

STRUCTURE can detect weak population signals (Latch et al., 2006), Puechmaille (2016) 

theorized that uneven sampling was the main contributor to ΔK’s inability to identify the correct 

K. Further, previous work has found that uneven sampling design in a multi-species empirical 

dataset did impact STRUCTURE results (Meirmans, 2019). Thus, we initially hypothesized that 

the discrepancy between Puechmaille’s estimators and ΔK was due to uneven sampling across 

clusters. ΔK is affected by uneven sampling because STRUCTURE tends to place individuals 

from an oversampled subpopulation into their own cluster while putting a sparsely sampled 

subpopulation into its own cluster, regardless of the true evolutionary history. Puechmaille’s new

estimators avoid this by implementing a range of cluster membership coefficients (from least 

stringent, 0.5 to most, 0.8) and accounting for maximum population subdivision via the 

estimators MaxMeaK and MaxMedK, thus correcting for STRUCTURE’s downward biased 

estimates of K. 
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To test how sampling evenness affects best K estimates, we calculated evenness scores for 

each study (Fig. 4) and correlated these scores with the proportion of estimators that agreed 

among all best K estimators. Surprisingly, we found no significant relationship between sampling

evenness and proportion agreement among best K estimators for both the ‘focused’ and ‘broad’ 

category datasets. In fact, a subset of studies at all levels of sampling evenness had high 

proportion agreement scores. Unexpectedly, the study that was the least evenly sampled, had one

of the highest proportion agreement scores. 

The unexpected poor power of sampling evenness to predict the ease of which the best K 

could be determined may stem from overestimating evenness. In human studies, populations are 

typically grouped based on linguistic, cultural, or physical characters and then sampled as evenly

as possible (Pritchard et al., 2000). However, a priori stratification of many non-model 

organisms into sampling groups is often not possible due to a lack of obvious phenotypes and 

poor understanding of metapopulation structure. In fact, the latter is often a motivation to 

conduct a STRUCTURE analysis. Yet, to have confidence in STRUCTURE results, even 

sampling is required, thus the paradox arises. Per design, the sites in each study might have been 

sampled evenly, which yielded high evenness scores (E > 80). However, sampling sites do not 

equate to populations and thus, some populations were unintentionally oversampled while others 

were under-sampled. Therefore, evenness scores as calculated here for a given study might be 

high and yet do not reflect even sampling of populations. Additionally, even sampling of 

populations across a species’ range is logistically challenging. Oversampling may occur at the 

center of a species’ range because there are more individuals per unit area making sampling 

easier. Likewise, under-sampling may occur at the margins of the range because, by definition, 

organisms occur at lower density requiring higher sampling effort. 
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Regardless of the reason why there is a lack of correlation between evenness and ease of 

determining the best K in this meta-analysis, it is very difficult to achieve even sampling across 

populations in practice even if it is desirable. It thus behooves us to use population genetics tools 

that can deal with reality by correcting for sampling unevenness ex post facto, as the alternative 

estimators do. We recommend using ΔK and the posterior probability to get a basic cluster 

estimation, followed by an analysis that uses all alternative K estimators at a range of thresholds. 

Since each estimator has different sensitivities and choice of threshold has a significant effect on 

result, comparing each to ΔK and the posterior probability during analysis offers the most robust 

procedure for estimating K in the case of potentially ambiguous sampling evenness. We 

additionally recommend inspecting STRUCTURE plots to tease out the best estimation of K in 

case new estimators give an ambiguous result (rare). Combining all four strategies—the ΔK, the 

posterior probability, the alternative K estimators, and examination of STRUCTURE plots—

ensures the most robust estimation of K and will allow researchers to detect biological subtleties 

that may not be recognizable using the ΔK estimate alone. 

Final Thoughts 
Our comprehensive re-analysis of population genetic structure across both a focused group 

of taxa (corals) and a broad group of taxa from across the Tree of Life indicates that population 

genetic structure may be more pronounced than previously described. The alternative K 

estimators typically agreed with each other across thresholds and ΔK when there was clear 

population structure across space. However, there were cases showing disagreement amongst 

estimators when population structure was more complicated, for example when sympatric 

samples were assigned with high probability to different clusters. Since the new estimators more 
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accurately predicted K than ΔK’s and the posterior probability’s predictions in studies where the 

best K was known (i.e., simulated data; Puechmaille, 2016) and there were substantially more 

empirical studies whose alternative K estimates differed drastically from traditional K estimation 

predictions than agreed with it (See Supplementary Table 2), we recommend the incorporation of

the alternative estimators to determine the best K. 

Our finding of little agreement between K estimation methods across a wide range of 

datasets indicate that choice of estimator has a substantial impact on the results in empirical data.

Further, we found that this is not restricted to a particularly complex taxonomic group (i.e., 

corals), nor to studies with obviously uneven sampling schemes. Thus, our recommendations for 

careful consideration in methodology applies to a wide range of studies. We find here that due to 

large scale disagreement between estimator solutions across datasets, a multi-estimator approach 

is always required, regardless of study species or sampling approach. Additionally, broader re-

analysis of existing microsatellite datasets may be warranted and has the added benefit of 

preserving these datasets for future use as many of these datasets were published before the 

advent of online repositories. 
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Main Text Figures 1-5, and Tables 1 & 2

Fig. 1 Histogram of Proportion Agreement. Focused category microsatellite datasets (n=26) 
were binned according to the proportion of the 16 alternative estimators (Puechmaille 2016) 
which agree with the (A) ΔK estimate and (B) the posterior probability estimate. Broad category 
datasets (n=15) were similarly binned according to the proportion agreement between the 16 
alternative estimators and (C) ΔK, and (D) the posterior probability estimate.
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Fig. 2 Average Discrepancy from ΔK and Posterior Probability (+/- SEM). The alternative 
estimators include MaxMeaK (maximum of means), the MaxMedK (maximum of medians), the 
MedMeaK (median of means), and the MedMedK (median of medians). Each estimator was 
calculated at four membership coefficient thresholds (0.5, 0.6, 0.7, 0.8) which are shown on the 
x-axis. For the ‘focused’ category (n=26), the difference from each of the 16 alternative 
estimators to (A) the ΔK estimate and to (B) the Posterior Probability was calculated and 
averaged across all 26 studies for each estimator (shown on the y-axis). For the ‘broad’ category 
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(n=15), the difference from the alternative estimators to (C) the ΔK estimate and to (D) the 
Posterior Probability is also shown.  SEM = Standard Error of the Mean.

Fig. 3 Difference from ΔK by threshold. A randomly selected subset of the alternative K 
estimators from a randomly selected subset of datasets from both the ‘focused’ and ‘broad’ 
categories is shown here to illustrate the effect of threshold for the alternative estimators 
(Puechmaille 2016) on the magnitude of deviation from ΔK. 
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Fig. 4 Sampling Scheme and Estimator Precision. For each dataset, an evenness score was 
calculated using the Shannon Diversity Index (plotted on the x-axis). Studies which had a more 
even number of samples taken from each site had a higher score (between 0 and 1). The 
proportion of alternative estimators that agreed with (A) the ΔK estimate and (B) the Posterior 
Probability was calculated for each dataset in the ‘focused’ category (n=26) and plotted on the y-
axis. A linear regression was plotted (red-dotted line) to show the relationship between evenness 
and proportion agreement with the (A) ΔK estimate (Adj. R2 = -0.016; Intercept = 1.0487; Slope 
= -0.7810; p-value = 0.4438) and (B) the Posterior Probability (Adj. R2 = 0.07939; Intercept = 
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2.415; Slope = -2.182; p-value = 0.08833). Similarly, for datasets in the ‘broad’ category (n=15) 
a linear regression between evenness and proportion agreement with (C) ΔK estimate (Adj. R2 = 
0.1722; Intercept = -1.8212; Slope = 2.0533; p-value = 0.06951) and (D) the Posterior 
Probability (Adj. R2 = 0.02763; Intercept = -2.222; Slope = 2.583; p-value =0.2583) is shown. In 
all cases, each point is weighted according to sample size. 

Fig. 5 Membership plots for Testudo hermanni. Membership plots for STRUCTURE runs 
when (A) K=5 and (B) K=7 for the ‘broad’ category dataset reanalyzing Perez et al. (2014) data 
for Hermann’s Tortoise (Testudo hermanni). According to Perez et al. (2014) BM = Bosco 
Mesola population (Italy), BN = Bosco Nordio population (Italy), ITCS = Central and Southern 
Italian population (Italy), SICO = Sicilian and Corsican population (Italy, France), SP = Spain 
Population (Spain), CROA = Croatian population (Croatia), FR = French population (France), 
GR = Greek population (Greece), and MAC = Macedonian population (Macedonia).
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Table 1. K values according to each estimator for datasets randomly selected for AMOVA from 
the ‘broad’ category (a) and the ‘focused’ category (b).

Dataset ID K Estimator support
(a) kim_et_al_2017 2 ΔK

5 MaxMeaK0.8, MedMeaK0.8
6 MedMeaK0.5, MedMeaK0.6, MedMeaK0.7, 

MedMedK0.5, MedMedK0.6, MedMedK0.7, 
MedMedK0.8

7 MaxMeaK0.5, MaxMeaK0.6, MaxMeaK0.7, 
MaxMedK0.5, MaxMedK0.6, MaxMedK0.7, 
MaxMedK0.8

8 PPK
(a) 
perez_et_al_2014

2 ΔK

7 All Puechmaille estimators
1
2

PPK

(b) 
baums_et_al_2010_
1

1 All Puechmaille estimators

2 ΔK
3 PPK

(b) rippe_et_al_2017 2 MaxMeaK0.8, MedMeaK0.8
3 MaxMeaK0.6, MaxMeaK0.7, MaxMedK0.6, 

MaxMedK0.7, MaxMedK0.8, MedMeaK0.6, 
MedMeaK0.7, MedMedK0.5, MedMedK0.6, 
MedMedK0.7, MedMedK0.8

4 MaxMeaK0.5, MaxMedK0.5, MedMeaK0.5
5 ΔK
1
0

PPK

Table 2. Analysis of molecular variance (AMOVA) across clustering solutions for randomly 
selected datasets in the ‘broad’ category (a) and the ‘focused category (b).

Dataset ID K Partitioning df Sum of 
squares

Varian
ce

% 
Variatio
n

(a) kim_et_al_2017

2
Between clusters 1 349.275 1.470 24.951
Between samples within 
clusters

31
8 1716.631 0.976 16.561

Within samples 32 1102.861 3.446 58.488



0
Total 63

9 3168.767 5.893 100.000
5

Between clusters 4 697.017 1.333 25.490
Between samples within 
clusters

31
5 1368.889 0.450 8.599

Within samples 32
0 1102.861 3.446 65.911

Total 63
9 3168.767 5.229 100.000

6
Between clusters 5 722.428 1.340 25.753
Between samples within 
clusters

31
4 1343.478 0.416 7.998

Within samples 32
0 1102.861 3.446 66.249

Total 63
9 3168.767 5.202 100.000

7
Between clusters 6 758.122 1.360 26.299
Between samples within 
clusters

31
3 1307.783 0.366 7.074

Within samples 32
0 1102.861 3.446 66.628

Total 63
9 3168.767 5.173 100.000

8
Between clusters 7 816.925 1.420 27.603
Between samples within 
clusters

31
2 1248.980 0.278 5.410

Within samples 32
0 1102.861 3.446 66.987

Total 63
9 3168.767 5.145 100.000

(a) perez_et_al_2014

2
Between clusters 1 789.683 2.424 36.605
Between samples within 
clusters

32
8 1791.112 1.263 19.082

Within samples 33
0 968.184 2.934 44.313

Total 65
9 3548.979 6.621 100.000

7
Between clusters 6 1320.461 2.438 41.637
Between samples within 32 1260.334 0.484 8.265



clusters 3
Within samples 33

0 968.184 2.934 50.098
Total 65

9 3548.979 5.856 100.000
(b) 
baums_et_al_2010_1

2
Between clusters 1 52.898 0.692 16.837
Between samples within 
clusters

18
0 652.745 0.209 5.081

Within samples 18
2 584.000 3.209 78.082

Total 36
3 1289.643 4.110 100.000

3
Between clusters 2 66.981 0.821 19.512
Between samples within 
clusters

17
9 638.662 0.180 4.266

Within samples 18
2 584.000 3.209 76.222

Total 36
3 1289.643 4.210 100.000

(b) rippe_et_al_2017
2

Between clusters 1 104.173 0.305 5.400
Between samples within 
clusters

36
7 2483.876 1.429 25.322

Within samples 36
9 1442.744 3.910 69.278

Total 73
7 4030.792 5.644 100.000

3
Between clusters 2 160.059 0.299 5.362
Between samples within 
clusters

36
6 2427.990 1.362 24.450

Within samples 36
9 1442.744 3.910 70.188

Total 73
7 4030.792 5.571 100.000

4
Between clusters 3 218.816 0.364 6.550
Between samples within 
clusters

36
5 2369.233 1.291 23.191

Within samples 36
9 1442.744 3.910 70.259

Total 73 4030.792 5.565 100.000



7
5

Between clusters 4 263.692 0.416 7.480
Between samples within 
clusters

36
4 2324.357 1.238 22.248

Within samples 36
9 1442.744 3.910 70.272

Total 73
7 4030.792 5.564 100.000

1
0

Between clusters 9 386.415 0.525 9.470
Between samples within 
clusters

35
9 2201.634 1.111 20.038

Within samples 36
9 1442.744 3.910 70.492

Total 73
7 4030.792 5.547 100.000

Note

df = degrees of freedom

Fig. S1 Weighted versus unweighted linear regression: Focused category. Each point in Fig. 
5A was weighted by sample size (blue line) and compared to the results of the unweighted 
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regression (red line). For the unweighted regression: Adj. R2 = 0.1051; Intercept = 1.8666; Slope 
= -1.6223; p-value = 0.0588. For the weighted regression: Adj. R2 = -0.016; Intercept = 1.0487; 
Slope = -0.7810; p-value = 0.4438.
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