187 research outputs found

    A step too far? Making health equity interventions in Namibia more sufficient

    Get PDF
    BACKGROUND: Equality of health status is the health equity goal being pursued in developed countries and advocated by development agencies such as WHO and The Rockefeller Foundation for developing countries also. Other concepts of fair distribution of health such as equity of access to medical care may not be sufficient to equalise health outcomes but, nevertheless, they may be more practical and effective in advancing health equity in developing countries. METHODS: A framework for relating health equity goals to development strategies allowing progressive redistribution of primary health care resources towards the more deprived communities is formulated. The framework is applied to the development of primary health care in post-independence Namibia. RESULTS: In Namibia health equity has been advanced through the progressive application of health equity goals of equal distribution of primary care resources per head, equality of access for equal met need and equality of utilisation for equal need. For practical and efficiency reasons it is unlikely that health equity would have been advanced further or more effectively by attempting to implement the goal of equality of health status. CONCLUSION: The goal of equality of health status may not be appropriate in many developing country situations. A stepwise approach based on progressive redistribution of medical services and resources may be more appropriate. This conclusion challenges the views of health economists who emphasise the need to select a single health equality goal and of development agencies which stress that equality of health status is the most important dimension of health equity

    Associations between outdoor temperature and markers of inflammation: a cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Associations between ambient temperature and cardiovascular mortality are well established. This study investigated whether inflammation could be part of the mechanism leading to temperature-related cardiovascular deaths.</p> <p>Methods</p> <p>The study population consisted of a cohort of 673 men with mean age of 74.6 years, living in the greater Boston area. They were seen for examination roughly every 4 years, and blood samples for inflammation marker analyses were drawn in 2000-2008 (total of 1254 visits). We used a mixed effects model to estimate the associations between ambient temperature and a variety of inflammation markers (C-reactive protein, white blood cell count, soluble Vascular Cell Adhesion Molecule-1, soluble Intercellular Adhesion Molecule-1, tumor necrosis factor alpha, and interleukins -1β, -6 and -8). Random intercept for each subject and several possible confounders, including combustion-related air pollution and ozone, were used in the models.</p> <p>Results</p> <p>We found a 0 to 1 day lagged and up to 4 weeks cumulative responses in C-reactive protein in association with temperature. We observed a 24.9% increase [95% Confidence interval (CI): 7.36, 45.2] in C-reactive protein for a 5°C decrease in the 4 weeks' moving average of temperature. We observed similar associations also between temperature and soluble Intercellular Adhesion Molecule-1 (4.52%, 95% CI: 1.05, 8.10, over 4 weeks' moving average), and between temperature and soluble Vascular Cell Adhesion Molecule-1 (6.60%, 95% CI: 1.31, 12.2 over 4 weeks' moving average). Penalized spline models showed no deviation from linearity. There were no associations between temperature and other inflammation markers.</p> <p>Conclusions</p> <p>Cumulative exposure to decreased temperature is associated with an increase in inflammation marker levels among elderly men. This suggests that inflammation markers are part of intermediate processes, which may lead to cold-, but not heat-, related cardiovascular deaths.</p

    The Arabidopsis cytochrome P450 CYP86A1 encodes a fatty acid ω-hydroxylase involved in suberin monomer biosynthesis

    Get PDF
    The lipophilic biopolyester suberin forms important boundaries to protect the plant from its surrounding environment or to separate different tissues within the plant. In roots, suberin can be found in the cell walls of the endodermis and the hypodermis or periderm. Apoplastic barriers composed of suberin accomplish the challenge to restrict water and nutrient loss and prevent the invasion of pathogens. Despite the physiological importance of suberin and the knowledge of the suberin composition of many plants, very little is known about its biosynthesis and the genes involved. Here, a detailed analysis of the Arabidopsis aliphatic suberin in roots at different developmental stages is presented. This study demonstrates some variability in suberin amount and composition along the root axis and indicates the importance of ω-hydroxylation for suberin biosynthesis. Using reverse genetics, the cytochrome P450 fatty acid ω-hydroxylase CYP86A1 (At5g58860) has been identified as a key enzyme for aliphatic root suberin biosynthesis in Arabidopsis. The corresponding horst mutants show a substantial reduction in ω-hydroxyacids with a chain length <C20, demonstrating that CYP86A1 functions as a hydroxylase of root suberized tissue. Detailed expression studies revealed a strong root specificity and a localized expression in the root endodermis. Transgenic expression of CYP86A1 fused to GFP distributed CYP86A1 to the endoplasmic reticulum, indicating that suberin monomer biosynthesis takes place in this sub-cellular compartment before intermediates are exported in the apoplast

    Complete Genome Sequence of the Aerobic CO-Oxidizing Thermophile Thermomicrobium roseum

    Get PDF
    In order to enrich the phylogenetic diversity represented in the available sequenced bacterial genomes and as part of an “Assembling the Tree of Life” project, we determined the genome sequence of Thermomicrobium roseum DSM 5159. T. roseum DSM 5159 is a red-pigmented, rod-shaped, Gram-negative extreme thermophile isolated from a hot spring that possesses both an atypical cell wall composition and an unusual cell membrane that is composed entirely of long-chain 1,2-diols. Its genome is composed of two circular DNA elements, one of 2,006,217 bp (referred to as the chromosome) and one of 919,596 bp (referred to as the megaplasmid). Strikingly, though few standard housekeeping genes are found on the megaplasmid, it does encode a complete system for chemotaxis including both chemosensory components and an entire flagellar apparatus. This is the first known example of a complete flagellar system being encoded on a plasmid and suggests a straightforward means for lateral transfer of flagellum-based motility. Phylogenomic analyses support the recent rRNA-based analyses that led to T. roseum being removed from the phylum Thermomicrobia and assigned to the phylum Chloroflexi. Because T. roseum is a deep-branching member of this phylum, analysis of its genome provides insights into the evolution of the Chloroflexi. In addition, even though this species is not photosynthetic, analysis of the genome provides some insight into the origins of photosynthesis in the Chloroflexi. Metabolic pathway reconstructions and experimental studies revealed new aspects of the biology of this species. For example, we present evidence that T. roseum oxidizes CO aerobically, making it the first thermophile known to do so. In addition, we propose that glycosylation of its carotenoids plays a crucial role in the adaptation of the cell membrane to this bacterium's thermophilic lifestyle. Analyses of published metagenomic sequences from two hot springs similar to the one from which this strain was isolated, show that close relatives of T. roseum DSM 5159 are present but have some key differences from the strain sequenced

    Functional Identification and Characterization of the Brassica Napus Transcription Factor Gene BnAP2, the Ortholog of Arabidopsis Thaliana APETALA2

    Get PDF
    BnAP2, an APETALA2 (AP2)-like gene, has been isolated from Brassica napus cultivar Zhongshuang 9. The cDNA of BnAP2, with 1, 299 bp in length, encoded a transcription factor comprising of 432 amino acid residues. Results from complementary experiment indicated that BnAP2 was completely capable of restoring the phenotype of Arabidopsis ap2-11 mutant. Together with the sequence and expression data, the complementation data suggested that BnAP2 encodes the ortholog of AtAP2. To address the transcriptional activation of BnAP2, we performed transactivation assays in yeast. Fusion protein of BnAP2 with GAL4 DNA binding domain strongly activated transcription in yeast, and the transactivating activity of BnAP2 was localized to the N-terminal 100 amino acids. To further study the function of BnAP2 involved in the phenotype of B. napus, we used a transgenic approach that involved targeted RNA interference (RNAi) repression induced by ihp-RNA. Floral various phenotype defectives and reduced female fertility were observed in B. napus BnAP2-RNAi lines. Loss of the function of BnAP2 gene also resulted in delayed sepal abscission and senescence with the ethylene-independent pathway. In the strong BnAP2-RNAi lines, seeds showed defects in shape, structure and development and larger size. Strong BnAP2-RNAi and wild-type seeds initially did not display a significant difference in morphology at 10 DAF, but the development of BnAP2-RNAi seeds was slower than that of wild type at 20 DAF, and further at 30 DAF, wild-type seeds were essentially at their final size, whereas BnAP2-RNAi seeds stopped growing and developing and gradually withered

    The Bifidobacterium dentium Bd1 Genome Sequence Reflects Its Genetic Adaptation to the Human Oral Cavity

    Get PDF
    Bifidobacteria, one of the relatively dominant components of the human intestinal microbiota, are considered one of the key groups of beneficial intestinal bacteria (probiotic bacteria). However, in addition to health-promoting taxa, the genus Bifidobacterium also includes Bifidobacterium dentium, an opportunistic cariogenic pathogen. The genetic basis for the ability of B. dentium to survive in the oral cavity and contribute to caries development is not understood. The genome of B. dentium Bd1, a strain isolated from dental caries, was sequenced to completion to uncover a single circular 2,636,368 base pair chromosome with 2,143 predicted open reading frames. Annotation of the genome sequence revealed multiple ways in which B. dentium has adapted to the oral environment through specialized nutrient acquisition, defences against antimicrobials, and gene products that increase fitness and competitiveness within the oral niche. B. dentium Bd1 was shown to metabolize a wide variety of carbohydrates, consistent with genome-based predictions, while colonization and persistence factors implicated in tissue adhesion, acid tolerance, and the metabolism of human saliva-derived compounds were also identified. Global transcriptome analysis demonstrated that many of the genes encoding these predicted traits are highly expressed under relevant physiological conditions. This is the first report to identify, through various genomic approaches, specific genetic adaptations of a Bifidobacterium taxon, Bifidobacterium dentium Bd1, to a lifestyle as a cariogenic microorganism in the oral cavity. In silico analysis and comparative genomic hybridization experiments clearly reveal a high level of genome conservation among various B. dentium strains. The data indicate that the genome of this opportunistic cariogen has evolved through a very limited number of horizontal gene acquisition events, highlighting the narrow boundaries that separate commensals from opportunistic pathogens

    Textures of eclogites and blueschists from Syros island, Greece: inferences for elastic anisotropy of subducted oceanic crust

    Get PDF
    Many blueschists and eclogites are inferred to have formed from oceanic basalts in subducted slabs. Knowledge of their elastic behaviour is essential for reconstructing the internal structure of subduction zones. The Cycladic Blueschist Unit, exposed on Syros Island (Greece), contains rocks belonging to an exhumed Tertiary subduction complex. They were possibly part of a subduction channel, a shear zone above the subducting slab in which exhumation is possible during subduction. Intense plastic deformation, forming crystallographic preferred orientations (CPO), accompanied blueschist and eclogite metamorphism. CPO of the constituent minerals in the collected samples was determined by time-of-flight neutron diffraction. Two samples are foliated fine-grained blueschists with strong CPO, rich in glaucophane, zoisite and phengite. Two coarser-grained eclogite samples rich in omphacite and clinozoisite, or glaucophane, have weaker CPO. Vp and Vs anisotropies were computed from the orientation distribution function and single-crystal elastic constants. All samples show velocity maxima parallel to the mineral lineation, and minima normal to the foliation, providing important constraints on orientations of seismic anisotropy in subduction channels. Vp anisotropies are up to three times higher (6.5-12%) in the blueschists than in the eclogites (3-4%), pointing to a potentially important lithological control of elastic anisotropy in subducted oceanic crust

    Molecular variability in Amerindians: widespread but uneven information

    Full text link
    corecore