153 research outputs found

    CO J=2-1 line emission in cluster galaxies at z~1: fueling star formation in dense environments

    Get PDF
    We present observations of CO J=2-1 line emission in infrared-luminous cluster galaxies at z~1 using the IRAM Plateau de Bure Interferometer. Our two primary targets are optically faint, dust-obscured galaxies (DOGs) found to lie within 2 Mpc of the centers of two massive (>10^14 Msun) galaxy clusters. CO line emission is not detected in either DOG. We calculate 3-sigma upper limits to the CO J=2-1 line luminosities, L'_CO < 6.08x10^9 and < 6.63x10^9 K km/s pc^2. Assuming a CO-to-H_2 conversion factor derived for ultraluminous infrared galaxies in the local Universe, this translates to limits on the cold molecular gas mass of M_H_2 < 4.86x10^9 Msun and M_H_2 < 5.30x10^9 Msun. Both DOGs exhibit mid-infrared continuum emission that follows a power-law, suggesting that an AGN contributes to the dust heating. As such, estimates of the star formation efficiencies in these DOGs are uncertain. A third cluster member with an infrared luminosity, L_IR < 7.4x10^11 Lsun, is serendipitously detected in CO J=2-1 line emission in the field of one of the DOGs located roughly two virial radii away from the cluster center. The optical spectrum of this object suggests that it is likely an obscured AGN, and the measured CO line luminosity is L'_CO = (1.94 +/- 0.35)x10^10 K km/s pc^2, which leads to an estimated cold molecular gas mass M_H_2 = (1.55+/-0.28)x10^10 Msun. A significant reservoir of molecular gas in a z~1 galaxy located away from the cluster center demonstrates that the fuel can exist to drive an increase in star-formation and AGN activity at the outskirts of high-redshift clusters.Comment: 22 pages, 4 figures; accepted for publication in Ap

    The Star-Formation Histories of z~2 DOGs and SMGs

    Full text link
    The Spitzer Space Telescope has identified a population of ultra-luminous infrared galaxies (ULIRGs) at z ~ 2 that may play an important role in the evolution of massive galaxies. We measure the stellar masses of two populations of Spitzer-selected ULIRGs, both of which have extremely red R-[24] colors (dust-obscured galaxies, or DOGs) and compare our results with sub-millimeter selected galaxies (SMGs). One set of 39 DOGs has a local maximum in their mid-IR spectral energy distribution (SED) at rest-frame 1.6um associated with stellar emission ("bump DOGs"), while the other set of 51 DOGs has a power-law dominated mid-IR SED with spectral features typical of obscured AGN ("power-law DOGs"). We use stellar population synthesis models applied self-consistently to broad-band photometry in the rest-frame ultra-violet, optical, and near-infrared of each of these populations and test a variety of stellar population synthesis codes, star-formation histories (SFHs), and initial mass functions (IMFs). Assuming a simple stellar population SFH and a Chabrier IMF, we find that the median and inner quartile stellar masses of SMGs, bump DOGs and power-law DOGs are given by log(M_*/M_sun) = 10.42_-0.36^+0.42, 10.62_-0.32^+0.36, and 10.71_-0.34^+0.40, respectively. Implementing more complicated SFHs with multiple age components increases these mass estimates by up to 0.5 dex. Our stellar mass estimates are consistent with physical mechanisms for the origin of z~2 ULIRGs that result in high star-formation rates for a given stellar mass. Such mechanisms are usually driven by a major merger of two gas-rich systems, rather than smooth accretion of gas and small satellites.Comment: 17 pages, 7 figures, 3 tables. Plus figures showing SEDs and best-fit synthesized stellar population model. Accepted to the Ap

    HST Morphologies of z ~ 2 Dust-Obscured Galaxies II: Bump Sources

    Get PDF
    We present Hubble Space Telescope (HST) imaging of 22 ultra-luminous infrared galaxies (ULIRGs) at z~2 with extremely red R-[24] colors (called dust-obscured galaxies, or DOGs) which have a local maximum in their spectral energy distribution (SED) at rest-frame 1.6um associated with stellar emission. These sources, which we call "bump DOGs", have star-formation rates of 400-4000 Msun/yr and have redshifts derived from mid-IR spectra which show strong polycyclic aromatic hydrocarbon emission --- a sign of vigorous on-going star-formation. Using a uniform morphological analysis, we look for quantifiable differences between bump DOGs, power-law DOGs (Spitzer-selected ULIRGs with mid-IR SEDs dominated by a power-law and spectral features that are more typical of obscured active galactic nuclei than starbursts), sub-millimeter selected galaxies (SMGs), and other less-reddened ULIRGs from the Spitzer extragalactic First Look Survey (XFLS). Bump DOGs are larger than power-law DOGs (median Petrosian radius of 8.4 +/- 2.7 kpc vs. 5.5 +/- 2.3 kpc) and exhibit more diffuse and irregular morphologies (median M_20 of -1.08 +/- 0.05 vs. -1.48 +/- 0.05). These trends are qualitatively consistent with expectations from simulations of major mergers in which merging systems during the peak star-formation rate period evolve from M_20 = -1.0 to M_20 = -1.7. Less obscured ULIRGs (i.e., non-DOGs) tend to have more regular, centrally peaked, single-object morphologies rather than diffuse and irregular morphologies. This distinction in morphologies may imply that less obscured ULIRGs sample the merger near the end of the peak star-formation rate period. Alternatively, it may indicate that the intense star-formation in these less-obscured ULIRGs is not the result of a recent major merger.Comment: Accepted to ApJ; 22 pages, 8 Figures, 7 Table

    HST Morphologies of z~2 Dust Obscured Galaxies I: Power-law Sources

    Get PDF
    We present high spatial resolution optical and near-infrared imaging obtained using the ACS, WFPC2 and NICMOS cameras aboard the Hubble Space Telescope of 31 24um--bright z~2 Dust Obscured Galaxies (DOGs) identified in the Bootes Field of the NOAO Deep Wide-Field Survey. Although this subset of DOGs have mid-IR spectral energy distributions dominated by a power-law component suggestive of an AGN, all but one of the galaxies are spatially extended and not dominated by an unresolved component at rest-frame UV or optical wavelengths. The observed V-H and I-H colors of the extended components are 0.2-3 magnitudes redder than normal star-forming galaxies. All but 1 have axial ratios >0.3, making it unlikely that DOGs are composed of an edge-on star-forming disk. We model the spatially extended component of the surface brightness distributions of the DOGs with a Sersic profile and find effective radii of 1-6 kpc. This sample of DOGs is smaller than most sub-millimeter galaxies (SMGs), but larger than quiescent high-redshift galaxies. Non-parametric measures (Gini and M20) of DOG morphologies suggest that these galaxies are more dynamically relaxed than local ULIRGs. We estimate lower limits to the stellar masses of DOGs based on the rest-frame optical photometry and find that these range from ~10^(9-11) M_sun. If major mergers are the progenitors of DOGs, then these observations suggest that DOGs may represent a post-merger evolutionary stage.Comment: 23 pages, 9 figures, 6 tables, accepted to ApJ; lower limits on stellar mass revised upwards by factor of (1+z

    Infrared Luminosities and Dust Properties of z ~ 2 Dust-Obscured Galaxies

    Get PDF
    We present SHARC-II 350um imaging of twelve 24um-bright (F_24um > 0.8 mJy) Dust-Obscured Galaxies (DOGs) and CARMA 1mm imaging of a subset of 2 DOGs, all selected from the Bootes field of the NOAO Deep Wide-Field Survey. Detections of 4 DOGs at 350um imply IR luminosities which are consistent within a factor of 2 of expectations based on a warm dust spectral energy distribution (SED) scaled to the observed 24um flux density. The 350um upper limits for the 8 non-detected DOGs are consistent with both Mrk231 and M82 (warm dust SEDs), but exclude cold dust (Arp220) SEDs. The two DOGs targeted at 1mm were not detected in our CARMA observations, placing strong constraints on the dust temperature: T_dust > 35-60 K. Assuming these dust properties apply to the entire sample, we find dust masses of ~3x10^8 M_sun. In comparison to other dusty z ~ 2 galaxy populations such as sub-millimeter galaxies (SMGs) and other Spitzer-selected high-redshift sources, this sample of DOGs has higher IR luminosities (2x10^13 L_sun vs. 6x10^12 L_sun for the other galaxy populations), warmer dust temperatures (>35-60 K vs. ~30 K), and lower inferred dust masses (3x10^8 M_sun vs. 3x10^9 M_sun). Herschel and SCUBA-2 surveys should be able to detect hundreds of these power-law dominated DOGs. We use HST and Spitzer/IRAC data to estimate stellar masses of these sources and find that the stellar to gas mass ratio may be higher in our 24um-bright sample of DOGs than in SMGs and other Spitzer-selected sources. Although larger sample sizes are needed to provide a definitive conclusion, the data are consistent with an evolutionary trend in which the formation of massive galaxies at z~2 involves a sub-millimeter bright, cold-dust and star-formation dominated phase followed by a 24um-bright, warm-dust and AGN-dominated phase.Comment: 16 pages, 7 figures, 6 tables; accepted to the Ap

    A Significant Population of Very Luminous Dust-Obscured Galaxies at Redshift z ~ 2

    Get PDF
    Observations with Spitzer Space Telescope have recently revealed a significant population of high-redshift z~2 dust-obscured galaxies (DOGs) with large mid-IR to UV luminosity ratios. These galaxies have been missed in traditional optical studies of the distant universe. We present a simple method for selecting this high-z population based solely on the ratio of the observed mid-IR 24um to optical R-band flux density. In the 8.6 sq.deg Bootes NDWFS Field, we uncover ~2,600 DOG candidates (= 0.089/sq.arcmin) with 24um flux densities F24>0.3mJy and (R-[24])>14 (i.e., F[24]/F[R] > 1000). These galaxies have no counterparts in the local universe, and become a larger fraction of the population at fainter F24, representing 13% of the sources at 0.3~mJy. DOGs exhibit evidence of both star-formation and AGN activity, with the brighter 24um sources being more AGN- dominated. We have measured spectroscopic redshifts for 86 DOGs, and find a broad z distribution centered at ~2.0. Their space density is 2.82E-5 per cubic Mpc, similar to that of bright sub-mm-selected galaxies at z~2. These redshifts imply very large luminosities LIR>~1E12-14 Lsun. DOGs contribute ~45-100% of the IR luminosity density contributed by all z~2 ULIRGs, suggesting that our simple selection criterion identifies the bulk of z~2 ULIRGs. DOGs may be the progenitors of ~4L* present-day galaxies seen undergoing a luminous,short- lived phase of bulge and black hole growth. They may represent a brief evolution phase between SMGs and less obscured quasars or galaxies. [Abridged]Comment: Accepted for publication in the Astrophysical Journa

    Clustering of Dust-Obscured Galaxies at z ~ 2

    Get PDF
    We present the angular autocorrelation function of 2603 dust-obscured galaxies (DOGs) in the Bootes field of the NOAO Deep Wide-Field Survey. DOGs are red, obscured galaxies, defined as having R-[24] \ge 14 (F_24/F_R \ga 1000). Spectroscopy indicates that they are located at 1.5 \la z \la 2.5. We find strong clustering, with r_0 = 7.40^{+1.27}_{-0.84} Mpc/h for the full F_24 > 0.3 mJy sample. The clustering and space density of the DOGs are consistent with those of submillimeter galaxies, suggestive of a connection between these populations. We find evidence for luminosity-dependent clustering, with the correlation length increasing to r_0 = 12.97^{+4.26}_{-2.64} Mpc/h for brighter (F_24 > 0.6 mJy) DOGs. Bright DOGs also reside in richer environments than fainter ones, suggesting these subsamples may not be drawn from the same parent population. The clustering amplitudes imply average halo masses of log M = 12.2^{+0.3}_{-0.2} Msun for the full DOG sample, rising to log M = 13.0^{+0.4}_{-0.3} Msun for brighter DOGs. In a biased structure formation scenario, the full DOG sample will, on average, evolve into ~ 3 L* present-day galaxies, whereas the most luminous DOGs may evolve into brightest cluster galaxies.Comment: ApJL in press; 4 pages, 3 figures, 1 tabl

    Comparing Ultraviolet and Infrared-Selected Starburst Galaxies in Dust Obscuration and Luminosity

    Full text link
    We present samples of starburst galaxies that represent the extremes discovered with infrared and ultraviolet observations, including 25 Markarian galaxies, 23 ultraviolet luminous galaxies discovered with GALEX, and the 50 starburst galaxies having the largest infrared/ultraviolet ratios. These sources have z < 0.5 and cover a luminosity range of ~ 10^4. Comparisons between infrared luminosities determined with the 7.7 um PAH feature and ultraviolet luminosities from the stellar continuum at 153 nm are used to determine obscuration in starbursts and dependence of this obscuration on infrared or ultraviolet luminosity. A strong selection effect arises for the ultraviolet-selected samples: the brightest sources appear bright because they have the least obscuration. Obscuration correction for the ultraviolet-selected Markarian+GALEX sample has the form log[UV(intrinsic)/UV(observed)] = 0.07(+-0.04)M(UV)+2.09+-0.69 but for the full infrared-selected Spitzer sample is log[UV(intrinsic)/UV(observed)] = 0.17(+-0.02)M(UV)+4.55+-0.4. The relation of total bolometric luminosity L_{ir} to M(UV) is also determined for infrared-selected and ultraviolet-selected samples. For ultraviolet-selected galaxies, log L_{ir} = -(0.33+-0.04)M(UV)+4.52+-0.69. For the full infrared-selected sample, log L_{ir} = -(0.23+-0.02)M(UV)+6.99+-0.41, all for L_{ir} in solar luminosities and M(UV) the AB magnitude at rest frame 153 nm. These results imply that obscuration corrections by factors of two to three determined from reddening of the ultraviolet continuum for Lyman Break Galaxies with z > 2 are insufficient, and should be at least a factor of 10 for M(UV) about -17, with decreasing correction for more luminous sources.Comment: accepted for publication in The Astrophysical Journa

    Selection of ULIRGs in Infrared and Submm Surveys

    Get PDF
    We examine the selection characteristics of infrared and sub-mm surveys with IRAS, Spitzer, BLAST, Herschel and SCUBA and identify the range of dust temperatures these surveys are sensitive to, for galaxies in the ULIRG luminosity range (12<log(LIR)<13), between z=0 and z=4. We find that the extent of the redshift range over which surveys are unbiased is a function of the wavelength of selection, flux density limit and ULIRG luminosity. Short wavelength (<200{\mu}m) surveys with IRAS, Spitzer/MIPS and Herschel/PACS are sensitive to all SED types in a large temperature interval (17-87K), over a substantial fraction of their accessible redshift range. On the other hand, long wavelength (>200{\mu}m) surveys with BLAST, Herschel/ SPIRE and SCUBA are significantly more sensitive to cold ULIRGs, disfavouring warmer SEDs even at low redshifts. We evaluate observations in the context of survey selection effects, finding that the lack of cold ULIRGs in the local (z<0.1) Universe is not a consequence of selection and that the range of ULIRG temperatures seen locally is only a subset of a much larger range which exists at high redshift. We demonstrate that the local luminosity-temperature (L-T) relation, which indicates that more luminous sources are also hotter, is not applicable in the distant Universe when extrapolated to the ULIRG regime, because the scatter in observed temperatures is too large. Finally, we show that the difference between the ULIRG temperature distributions locally and at high redshift is not the result of galaxies becoming colder due to an L-T relation which evolves as a function of redshift. Instead, they are consistent with a picture where the evolution of the infrared luminosity function is temperature dependent, i.e. cold galaxies evolve at a faster rate than their warm counterparts.Comment: 11 pages, 6 figures, accepted for publication in MNRA

    A Physical Model for z~2 Dust Obscured Galaxies

    Get PDF
    We present a physical model for the origin of z~2 Dust-Obscured Galaxies (DOGs), a class of high-redshift ULIRGs selected at 24 micron which are particularly optically faint (24/R>1000). By combining N-body/SPH simulations of high redshift galaxy evolution with 3D polychromatic dust radiative transfer models, we find that luminous DOGs (with F24 > 0.3 mJy at z~2 are well-modeled as extreme gas-rich mergers in massive (~5x10^12-10^13 Msun) halos, with elevated star formation rates (~500-1000 Msun/yr) and/or significant AGN growth (Mdot > 0.5 Msun/yr), whereas less luminous DOGs are more diverse in nature. At final coalescence, merger-driven DOGs transition from being starburst dominated to AGN dominated, evolving from a "bump" to a power-law shaped mid-IR (IRAC) spectral energy distribution (SED). After the DOG phase, the galaxy settles back to exhibiting a "bump" SED with bluer colors and lower star formation rates. While canonically power-law galaxies are associated with being AGN-dominated, we find that the power-law mid-IR SED can owe both to direct AGN contribution, as well as to a heavily dust obscured stellar bump at times that the galaxy is starburst dominated. Thus power-law galaxies can be either starburst or AGN dominated. Less luminous DOGs can be well-represented either by mergers, or by massive ($M_{\rm baryon} ~5x10^11 Msun) secularly evolving gas-rich disc galaxies (with SFR > 50 Msun/yr). By utilising similar models as those employed in the SMG formation study of Narayanan et al. (2010), we investigate the connection between DOGs and SMGs. We find that the most heavily star-forming merger driven DOGs can be selected as Submillimetre Galaxies (SMGs), while both merger-driven and secularly evolving DOGs typically satisfy the BzK selection criteria.Comment: Accepted by MNRAS; major changes include better description of dependency on ISM specification and updated models allowing dust to evolve with metallicity
    • …
    corecore