741 research outputs found

    A temperate former West Antarctic ice sheet suggested by an extensive zone of bed channels

    Get PDF
    Several recent studies predict that the West Antarctic Ice Sheet will become increasingly unstable under warmer conditions. Insights on such change can be assisted through investigations of the subglacial landscape, which contains imprints of former ice-sheet behavior. Here, we present radio-echo sounding data and satellite imagery revealing a series of ancient large sub-parallel subglacial bed channels preserved in the region between the Möller and Foundation Ice Streams, West Antarctica. We suggest that these newly recognized channels were formed by significant meltwater routed along the icesheet bed. The volume of water required is likely substantial and can most easily be explained by water generated at the ice surface. The Greenland Ice Sheet today exemplifies how significant seasonal surface melt can be transferred to the bed via englacial routing. For West Antarctica, the Pliocene (2.6–5.3 Ma) represents the most recent sustained period when temperatures could have been high enough to generate surface melt comparable to that of present-day Greenland. We propose, therefore, that a temperate ice sheet covered this location during Pliocene warm periods

    Charge order, orbital order, and electron localization in the Magneli phase Ti4O7

    Get PDF
    The metal-insulator transition of the Magneli phase Ti4O7 is studied by means of augmented spherical wave (ASW) electronic structure calculations as based on density functional theory and the local density approximation. The results show that the metal-insulator transition arises from a complex interplay of charge order, orbital order, and singlet formation of those Ti 3d states which mediate metal-metal bonding inside the four-atom chains characteristic of the material. Ti4O7 thus combines important aspects of Fe3O4 and VO2. While the charge ordering closely resembles that observed at the Verwey transition, the orbital order and singlet formation appear to be identical to the mechanisms driving the metal-insulator transition of vanadium dioxide.Comment: 11 pages, 4 figures, more information at http://www.physik.uni-augsburg.de/~eyert

    Immunomodulation by Mesenchymal Stem Cells : A Potential Therapeutic Strategy for Type 1 Diabetes

    Get PDF
    Mesenchymal stem cells (MSCs) are pluripotent stromal cells that have the potential to give rise to cells of diverse lineages. Interestingly, MSCs can be found in virtually all postnatal tissues. The main criteria currently used to characterize and identify these cells are the capacity for self-renewal and differentiation into tissues of mesodermal origin, combined with a lack in expression of certain hematopoietic molecules. Because of their developmental plasticity, the notion of MSC-based therapeutic intervention has become an emerging strategy for the replacement of injured tissues. MSCs have also been noted to possess the ability to impart profound immunomodulatory effects in vivo. Indeed, some of the initial observations regarding MSC protection from tissue injury once thought mediated by tissue regeneration may, in reality, result from immunomodulation. Whereas the exact mechanisms underlying the immunomodulatory functions of MSC remain largely unknown, these cells have been exploited in a variety of clinical trials aimed at reducing the burden of immune-mediated disease. This article focuses on recent advances that have broadened our understanding of the immunomodulatory properties of MSC and provides insight as to their potential for clinical use as a cell-based therapy for immune-mediated disorders and, in particular, type 1 diabetes

    Rapid realist review of the evidence : achieving lasting change when mental health rehabilitation staff undertake recovery-oriented training

    Get PDF
    Aim: To identify the factors contributing to lasting change in practice following a recovery-based training intervention for inpatient mental health rehabilitation staff. Background: Staff training may help nurses and other staff groups in inpatient mental health rehabilitative settings to increase their recovery-oriented practice. There are no published reviews on the effectiveness of such training and few long-term evaluations. This review informed a realist evaluation of a specific intervention (‘GetREAL’). Design: Rapid realist review methodology was used to generate and prioritise programme theories. Data sources: ASSIA, CINAHL, Cochrane Library, Medline, PsycINFO, Scopus, Web of Science and grey literature searches were performed in September 2014-March 2015 with no date restrictions. Stakeholders suggested further documents. GetREAL project documentation was consulted. Review methods: Programme theory development took place iteratively with literature identification. Stakeholders validated and prioritised emerging programme theories and the prioritised theories were refined using literature case studies. Results: 51 relevant documents fed into 49 programme theories articulating seven mechanisms for lasting change. Prioritised mechanisms were: staff receptiveness to change; and staff feeling encouraged, motivated and supported by colleagues and management to change. Seven programme theories were prioritised and refined using data from four case studies. Conclusion: Lasting change can be facilitated by collaborative action planning, regular collaborative meetings, appointing a change agent, explicit management endorsement and prioritisation and modifying organisational structures. Conversely, a challenging organisational climate, or a prevalence of ‘change fatigue’, may block change. Pre-intervention exploration may help identify any potential barriers to embedding recovery in the organisational culture

    Immunomodulatory effects of human amniotic membrane-derived mesenchymal stem cells

    Get PDF
    Human amniotic membrane-derived mesenchymal stem cells (hAM-MSCs) are capable of differentiating into several lineages and possess immunomodulatory properties. In this study, we investigated the soluble factor-mediated immunomodulatory effects of hAM-MSCs. Mitogen-induced peripheral blood mononuclear cell (PBMC) proliferation was suppressed by hAM-MSCs in a dose-dependent manner as well as hAM-MSC culture supernatant. Moreover, interferon-gamma and interleukin (IL)-17 production significantly decreased from PBMC, whereas IL-10 from PBMCs and transforming growth factor beta (TGF-β) production from hAM-MSCs significantly increased in co-cultures of hAM-MSCs and PBMCs. Production of several MSC factors, including hepatocyte growth factor (HGF), TGF-β, prostaglandin E2 (PGE2), and indoleamine 2, 3 dioxygenase (IDO), increased significantly in hAM-MSCs co-cultured with PBMCs. These results indicate that the immunomodulatory effects of hAM-MSCs may be associated with soluble factors (TGF-β, HGF, PGE2, and IDO), suggesting that hAM-MSCs may have potential clinical use in regenerative medicine

    Charge Delocalization in Self-Assembled Mixed-Valence Aromatic Cation Radicals

    Get PDF
    The spontaneous assembly of aromatic cation radicals (D+•) with their neutral counterpart (D) affords dimer cation radicals (D2+•). The intermolecular dimeric cation radicals are readily characterized by the appearance of an intervalence charge-resonance transition in the NIR region of their electronic spectra and by ESR spectroscopy. The X-ray crystal structure analysis and DFT calculations of a representative dimer cation radical (i.e., the octamethylbiphenylene dimer cation radical) have established that a hole (or single positive charge) is completely delocalized over both aromatic moieties. The energetics and the geometrical considerations for the formation of dimer cation radicals is deliberated with the aid of a series of cyclophane-like bichromophoric donors with drastically varied interplanar angles between the cofacially arranged aryl moieties. X-ray crystallography of a number of mixed-valence cation radicals derived from monochromophoric benzenoid donors established that they generally assemble in 1D stacks in the solid state. However, the use of polychromophoric intervalence cation radicals, where a single charge is effectively delocalized among all of the chromophores, can lead to higher-order assemblies with potential applications in long-range charge transport. As a proof of concept, we show that a single charge in the cation radical of a triptycene derivative is evenly distributed on all three benzenoid rings and this triptycene cation radical forms a 2D electronically coupled assembly, as established by X-ray crystallography

    Mesenchymal Stem Cells Prevent the Rejection of Fully Allogenic Islet Grafts by the Immunosuppressive Activity of Matrix Metalloproteinase-2 and -9

    Get PDF
    OBJECTIVE Mesenchymal stem cells (MSCs) are known to be capable of suppressing immune responses, but the molecular mechanisms involved and the therapeutic potential of MSCs remain to be clarified. RESEARCH DESIGN AND METHODS We investigated the molecular mechanisms underlying the immunosuppressive effects of MSCs in vitro and in vivo. RESULTS Our results demonstrate that matrix metalloproteinases (MMPs) secreted by MSCs, in particular MMP-2 and MMP-9, play an important role in the suppressive activity of MSCs by reducing surface expression of CD25 on responding T-cells. Blocking the activity of MMP-2 and MMP-9 in vitro completely abolished the suppression of T-cell proliferation by MSCs and restored T-cell expression of CD25 as well as responsiveness to interleukin-2. In vivo, administration of MSCs significantly reduced delayed-type hypersensitivity responses to allogeneic antigen and profoundly prolonged the survival of fully allogeneic islet grafts in transplant recipients. Significantly, these MSC-mediated protective effects were completely reversed by in vivo inhibition of MMP-2 and MMP-9. CONCLUSIONS We demonstrate that MSCs can prevent islet allograft rejection leading to stable, long-term normoglycemia. In addition, we provide a novel insight into the mechanism underlying the suppressive effects of MSCs on T-cell responses to alloantigen.</p

    Establishment of Efficacy and Safety Assessment of Human Adipose Tissue-Derived Mesenchymal Stem Cells (hATMSCs) in a Nude Rat Femoral Segmental Defect Model

    Get PDF
    Human adipose tissue-derived mesenchymal stem cell (hATMSC) have emerged as a potentially powerful tool for bone repair, but an appropriate evaluation system has not been established. The purpose of this study was to establish a preclinical assessment system to evaluate the efficacy and safety of cell therapies in a nude rat bone defect model. Segmental defects (5 mm) were created in the femoral diaphyses and transplanted with cell media (control), hydroxyapatite/tricalcium phosphate scaffolds (HA/TCP, Group I), hATMSCs (Group II), or three cell-loading density of hATMSC-loaded HA/TCP (Group III-V). Healing response was evaluated by serial radiography, micro-computed tomography and histology at 16 weeks. To address safety-concerns, we conducted a GLP-compliant toxicity study. Scanning electron microscopy studies showed that hATMSCs filled the pores/surfaces of scaffolds in a cell-loading density-dependent manner. We detected significant increases in bone formation in the hATMSC-loaded HA/TCP groups compared with other groups. The amount of new bone formation increased with increases in loaded cell number. In a toxicity study, no significant hATMSC-related changes were found in body weights, clinical signs, hematological/biochemical values, organ weights, or histopathological findings. In conclusion, hATMSCs loaded on HA/TCP enhance the repair of bone defects and was found to be safe under our preclinical efficacy/safety hybrid assessment system

    Experimental arthritis induced by a clinical Mycoplasma fermentans isolate

    Get PDF
    BACKGROUND: Mycoplasma fermentans has been associated with rheumatoid arthritis. Recently, it was detected in the joints and blood of patients with rheumatoid arthritis, but it is not clear yet how the bacteria enter the body and reach the joints. The purpose of this study was to determine the ability of M. fermentans to induce experimental arthritis in rabbits following inoculation of the bacteria in the trachea and knee joints. METHODS: P-140 and PG-18 strains were each injected in the knee joints of 14 rabbits in order to evaluate and compare their arthritogenicity. P-140 was also injected in the trachea of 14 rabbits in order to test the ability of the bacteria to reach the joints and induce arthritis. RESULTS: M. fermentans produced an acute arthritis in rabbits. Joint swelling appeared first in rabbits injected with P-140, which caused a more severe arthritis than PG-18. Both strains were able to migrate to the uninoculated knee joints and they were detected viable in the joints all along the duration of the experiment. Changes in the synovial tissue were more severe by the end of the experiment and characterized by the infiltration of neutrophils and substitution of adipose tissue by connective tissue. Rabbits intracheally injected with P-140 showed induced arthritis and the bacteria could be isolated from lungs, blood, heart, kidney, spleen, brain and joints. CONCLUSION: M. fermentans induced arthritis regardless of the inoculation route. These findings may help explain why mycoplasmas are commonly isolated from the joints of rheumatic patients
    corecore