7 research outputs found

    Search for dark photons produced in 13 TeV pppp collisions

    Get PDF
    Searches are performed for both promptlike and long-lived dark photons, A 0 , produced in proton-proton collisions at a center-of-mass energy of 13 TeV, using A 0 → μ þ μ − decays and a data sample corresponding to an integrated luminosity of 1 . 6 fb − 1 collected with the LHCb detector. The promptlike A 0 search covers the mass range from near the dimuon threshold up to 70 GeV, while the long-lived A 0 search is restricted to the low-mass region 214 <m ð A 0 Þ < 350 MeV. No evidence for a signal is found, and 90% confidence level exclusion limits are placed on the γ – A 0 kinetic-mixing strength. The constraints placed on promptlike dark photons are the most stringent to date for the mass range 10 . 6 <m ð A 0 Þ < 70 GeV, and are comparable to the best existing limits for m ð A 0 Þ < 0 . 5 GeV. The search for long-lived dark photons is the first to achieve sensitivity using a displaced-vertex signature

    Microarray-based whole-genome hybridization as a tool for determining procaryotic species relatedness

    No full text
    The definition and delineation of microbial species are of great importance and challenge due to the extent of evolution and diversity. Whole-genome DNA-DNA hybridization is the cornerstone for defining procaryotic species relatedness, but obtaining pairwise DNA-DNA reassociation values for a comprehensive phylogenetic analysis of procaryotes is tedious and time consuming. A previously described microarray format containing whole-genomic DNA (the community genome array or CGA) was rigorously evaluated as a high-throughput alternative to the traditional DNA-DNA reassociation approach for delineating procaryotic species relationships. DNA similarities for multiple bacterial strains obtained with the CGA-based hybridization were comparable to those obtained with various traditional whole-genome hybridization methods (r=0.87, P&lt;0.01). Significant linear relationships were also observed between the CGA-based genome similarities and those derived from small subunit (SSU) rRNA gene sequences (r=0.79, P&lt;0.0001), gyrB sequences (r=0.95, P&lt;0.0001) or REP- and BOX-PCR fingerprinting profiles (r=0.82, P&lt;0.0001). The CGA hybridization-revealed species relationships in several representative genera, including Pseudomonas, Azoarcus and Shewanella, were largely congruent with previous classifications based on various conventional whole-genome DNA-DNA reassociation, SSU rRNA and/or gyrB analyses. These results suggest that CGA-based DNA-DNA hybridization could serve as a powerful, high-throughput format for determining species relatedness among microorganisms

    Measurements of the branching fractions of Λ c +  → pπ−π+, Λ c +  → pK−K+, and Λ c +  → pπ−K+

    No full text
    The ratios of the branching fractions of the decays Λc+pππ+\Lambda_{c}^{+} \rightarrow p \pi^{-} \pi^{+}, Λc+pKK+\Lambda_{c}^{+} \rightarrow p K^{-} K^{+}, and Λc+pπK+\Lambda_{c}^{+} \rightarrow p \pi^{-} K^{+} with respect to the Cabibbo-favoured Λc+pKπ+\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+} decay are measured using proton-proton collision data collected with the LHCb experiment at a 7 TeV centre-of-mass energy and corresponding to an integrated luminosity of 1.0 fb1^{-1}: \begin{align*} \frac{\mathcal{B}(\Lambda_{c}^{+} \rightarrow p \pi^{-} \pi^{+})}{\mathcal{B}(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+})} &amp; = (7.44 \pm 0.08 \pm 0.18)\,\%, \\ \frac{\mathcal{B}(\Lambda_{c}^{+} \rightarrow p K^{-} K^{+})}{\mathcal{B}(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+})} &amp;= (1.70 \pm 0.03 \pm 0.03)\,\%, \\ \frac{\mathcal{B}(\Lambda_{c}^{+} \rightarrow p \pi^{-} K^{+})}{\mathcal{B}(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+})} &amp; = (0.165 \pm 0.015 \pm 0.005 )\,\%, \end{align*} where the uncertainties are statistical and systematic, respectively. These results are the most precise measurements of these quantities to date. When multiplied by the world-average value for B(Λc+pKπ+)\mathcal{B}(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}), the corresponding branching fractions are \begin{align*} \mathcal{B}(\Lambda_{c}^{+} \rightarrow p \pi^{-} \pi^{+}) &amp;= (4.72 \pm 0.05 \pm 0.11 \pm 0.25) \times 10^{-3}, \\ \mathcal{B}(\Lambda_{c}^{+} \rightarrow p K^{-} K^{+}) &amp;= (1.08 \pm 0.02 \pm 0.02 \pm 0.06) \times 10^{-3}, \\ \mathcal{B}(\Lambda_{c}^{+} \rightarrow p \pi^{-} K^{+}) &amp;= (1.04 \pm 0.09 \pm 0.03 \pm 0.05) \times 10^{-4}, \end{align*} where the final uncertainty is due to B(Λc+pKπ+)\mathcal{B}(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+})

    Measurement of the CKM angle γ using B± → DK± with D → K S 0 π+π−, K S 0 K+K− decays

    No full text
    A binned Dalitz plot analysis of B ± → DK ± decays, with D→K0Sπ+π− and D→K0SK+K−, is performed to measure the CP-violating observables x ± and y ±, which are sensitive to the Cabibbo-Kobayashi-Maskawa angle γ. The analysis exploits a sample of proton-proton collision data corresponding to 3.0 fb−1 collected by the LHCb experiment. Measurements from CLEO-c of the variation of the strong-interaction phase of the D decay over the Dalitz plot are used as inputs. The values of the parameters are found to be x + = (−7.7 ± 2.4 ± 1.0 ± 0.4) × 10− 2, x − = (2.5 ± 2.5 ± 1.0 ± 0.5) × 10− 2, y + = (−2.2 ± 2.5 ± 0.4 ± 1.0) × 10− 2 and y − = (7.5 ± 2.9 ± 0.5 ± 1.4) × 10− 2. The first, second, and third uncertainties are the statistical, the experimental systematic, and that associated with the precision of the strong-phase parameters. These are the most precise measurements of these observables and correspond to γ = (62 − 14 + 15) ° , with a second solution at γ → γ + 180°, and r B  = 0.080 − 0.021 + 0.019, where r B is the ratio between the suppressed and favoured B decay amplitudes

    Measurements of CP asymmetries in charmless four-body Lambda(0)(b) and Xi(0)(b) decays

    No full text
    corecore