106 research outputs found

    Recent loss of floating ice and the consequent sea level contribution

    Get PDF
    We combine new and published satellite observations and the results of a coupled ice-ocean model to provide the first estimate of changes in the quantity of ice floating in the global oceans and the consequent sea level contribution. Rapid losses of Arctic sea ice and small Antarctic ice shelves are partially offset by thickening of Antarctic sea ice and large Antarctic ice shelves. Altogether, 746 +/- 127 km(3) yr(-1) of floating ice was lost between 1994 and 2004, a value that exceeds considerably the reduction in grounded ice over the same period. Although the losses are equivalent to a small (49 +/- 8 ÎŒm yr(-1)) rise in mean sea level, there may be large regional variations in the degree of ocean freshening and mixing. Ice shelves at the Antarctic Peninsula and in the Amundsen Sea, for example, have lost 481 +/- 38 km(3) yr(-1)

    The long-term and interannual variability of summer fresh water storage over the eastern Siberian shelf: Implication for climatic change

    Get PDF
    A time series of summer fresh water content anomalies (FWCA) over the Laptev and East Siberian sea shelves was constructed from historical hydrographic records for the period from 1920 to 2005. Results from a multiple regression between FCWA and various atmospheric and oceanic indices show that the fresh water content on the shelves is mainly controlled by atmospheric vorticity on quasi-decadal timescales. When the vorticity of the atmosphere on the shelves is antycyclonic, approximately 500 km3 of fresh water migrates from the eastern Siberian shelf to the Arctic Ocean through the northeastern Laptev Sea. When the vorticity of the atmosphere is cyclonic, this fresh water remains on the southern Laptev and East Siberian sea shelves. This FWCA represents approximately 35% of the total fresh water inflow provided by river discharge and local sea-ice melt, and is about ten times larger than the standard deviation of the Lena River summer long-term mean discharge. However, the large interannual and spatial variability in the fresh water content of the shelves, as well as the spatial coverage of the hydrographic data, makes it difficult to detect the long-term tendency of fresh water storage associated with climate change

    Utilizing CryoSat-2 sea ice thickness to initialize a coupled ice-ocean modeling system

    Get PDF
    Two CryoSat-2 sea ice thickness products derived with independent algorithms are used to initialize a coupled ice-ocean modeling system in which a series of reanalysis studies are performed for the period of March 15, 2014–September 30, 2015. Comparisons against moored upward looking sonar, drifting ice mass balance buoy, and NASA Operation IceBridge ice thickness data show that the modeling system exhibits greatly reduced bias using the satellite-derived ice thickness data versus the operational model run without these data. The model initialized with CryoSat-2 ice thickness exhibits skill in simulating ice thickness from the initial period to up to 6 months. We find that the largest improvements in ice thickness occur over multi-year ice. Based on the data periods examined here, we find that for the 18-month study period, when compared with upward looking sonar measurements, the CryoSat-2 reanalyses show significant improvement in bias (0.47–0.75) and RMSE (0.89–1.04) versus the control run without these data (1.44 and 1.60, respectively). An ice drift comparison reveals little change in ice velocity statistics for the Pan Arctic region; however some improvement is seen during the summer/autumn months in 2014 for the Bering/Beaufort/Chukchi and Greenland/Norwegian Seas. These promising results suggest that such a technique should be used to reinitialize operational sea ice modeling systems
    • 

    corecore