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Abstract

Two CryoSat-2 sea ice thickness products derived with independent algorithms are used to initialize a coupled ice-ocean modeling
system in which a series of reanalysis studies are performed for the period of March 15, 2014–September 30, 2015. Comparisons against
moored upward looking sonar, drifting ice mass balance buoy, and NASA Operation IceBridge ice thickness data show that the mod-
eling system exhibits greatly reduced bias using the satellite-derived ice thickness data versus the operational model run without these
data. The model initialized with CryoSat-2 ice thickness exhibits skill in simulating ice thickness from the initial period to up to 6 months.
We find that the largest improvements in ice thickness occur over multi-year ice. Based on the data periods examined here, we find that
for the 18-month study period, when compared with upward looking sonar measurements, the CryoSat-2 reanalyses show significant
improvement in bias (0.47–0.75) and RMSE (0.89–1.04) versus the control run without these data (1.44 and 1.60, respectively). An
ice drift comparison reveals little change in ice velocity statistics for the Pan Arctic region; however some improvement is seen during
the summer/autumn months in 2014 for the Bering/Beaufort/Chukchi and Greenland/Norwegian Seas. These promising results suggest
that such a technique should be used to reinitialize operational sea ice modeling systems.
Published by Elsevier Ltd on behalf of COSPAR. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
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1. Introduction

Arctic sea ice extent has been on the decline for the past
several decades (Parkinson and Cavalieri, 2008). The
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has declined on average 2.7% and 13.3% per decade,
respectively, for the period of 1979–2016 (Perovich et al.,
2016). Multi-year ice (MYI) has been in decline for the past
3 decades, with ice older than 4 years accounting for 20%
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Tschudi et al., 2016). Also, first-year ice (FYI) has
accounted for 60–70% of the March ice pack since 2008.
Markus et al. (2009) investigated passive microwave satel-
lite data for the period of 1979–2008 and found the average
length of the melt season had increased by 6.4 days per dec-
ade over the 30-year period for the entire Arctic, with the
Chukchi/Beaufort and Laptev/East Siberian Seas showing
trends of 12.0 and 11.3 days per decade, respectively.

The observed changes in Arctic sea ice provide motiva-
tion to assess and improve sea ice forecasting capabilities.
The following three paragraphs describe ice thickness mea-
surements obtained from European Remote Sensing (ERS-
1 and -2) platforms, Ice, Cloud, and land Elevation Satel-
lite (ICESat), CryoSat-2 and NASA Operation IceBridge
(OIB). An overview of seasonal forecasting since 2008 fol-
lows, with the remaining paragraphs describing models and
modeling systems and how they have been used to measure
the decline in sea ice extent and volume. We also include a
paragraph describing the importance of snow depth on ice
thickness retrievals.

Measurements from radar altimeters on the ERS-1 and
ERS-2 platforms provided the first basin-scale mappings of
Arctic sea ice thickness for the period 1993–2001 (Laxon
et al., 2003), although to a latitudinal limit of 81.5�N. Laser
altimeter data from ICESat extended the observations to
nearly Arctic-wide coverage, and provided seasonal
(autumn and winter) ice thickness mappings from 2003 to
2008 (Kwok et al., 2007, 2009). Kwok and Rothrock
(2009) examined submarine data for the period of 1958–
2008 and available ICESat data and found a significant
decline in mean winter ice thickness from 3.64 m in 1980
to 1.89 m in 2008. Haas et al. (2008) collected helicopter-
borne electromagnetic measurements of ice thickness in
the Transpolar Drift for the years 2001, 2004 and 2007,
and found a 44% reduction in mean ice thickness since
2001.

CryoSat-2 (Laxon et al., 2013; Kurtz et al., 2014),
launched in April 2010, provides surface elevation, which
can be converted to ice freeboard, during the months of
January–May and October–December of each year.
CryoSat-2 (CS2) data is not available during summer
months due to signal contamination resulting from snow/
ice melt, open water and melt ponds.

NASA OIB (Kurtz et al., 2013; Richter-Menge and
Farrell, 2013) initiated the collection of Arctic ice thickness
and snow depth measurements from airborne platforms in
March/April 2009 to bridge the gap in satellite-borne mea-
surements of ice freeboard between ICESat and the
planned 2018 launch of ICESat-2. Antarctic OIB surveys
were also initiated in 2009 and are conducted in the Octo-
ber/November time frame. This paper focuses on the
assimilation of Arctic data. OIB provides freeboard esti-
mates derived from an airborne LIDAR which when com-
bined with snow depth estimates from an ultra-wideband
snow radar are converted to ice thickness (Farrell et al.,
2012; Kurtz et al., 2013, 2014). The OIB surveys were
designed to complement the satellite-based estimates of
ice thickness from CS2 and helicopter- and aircraft-
mounted electro-magnetic (EM) measurements (Haas
et al., 2008, 2010) of ice thickness. For example, a compar-
ison of OIB sea ice thickness data collected during the
March-April 2014 survey with CS2 thickness estimates
(Laxon et al., 2013) for the same period is shown in
Fig. 1. There is excellent agreement (mean difference of
0.15 m, and correlation coefficient of 0.71) between the
two independent measures of Arctic ice thickness, with
both clearly showing a gradient from thicker, older ice
north of Greenland and the Canadian Arctic Archipelago,
to thinner ice in the FYI regions of the Beaufort, Chukchi,
East Siberian, Laptev, Kara and Barents Seas. Richter-
Menge and Farrell (2013) examined OIB data in the west-
ern Arctic Ocean for the period of March/April 2009–2013.
They found that the central Arctic was dominated by MYI
with a mean thickness of 3.2 m, while the southern Beau-
fort and Chukchi Sea region containing a mixture of 75%
FYI and 25% MYI, and found mean thicknesses decreased
from near 2.5 m to a low of 1.6 m during the five-year
period.

The importance of sea ice thickness for seasonal and
longer-term forecasts of sea ice extent has been investigated
by several researchers. Lindsay et al. (2008) utilized the
Pan-Arctic Ice-Ocean Modeling and Assimilation System
(PIOMAS) to study seasonal predictions of sea ice extent.
They found that the pan-Arctic forecast skill relative to cli-
matology was 0.77 with a six month lead time for a forecast
initialized in March. They determined that ice concentra-
tion was the dominant factor in the first 2 months and
the ocean temperature of the model layer with a depth
between 200 and 270 m was most important for longer lead
times. Holland et al. (2011) used the Community Climate
System Model version 3 to study the predictability of the
summer sea ice extent. They found that winter precondi-
tioning provides some summer ice area predictability and
stressed the importance of feedback to the atmosphere.
Day et al. (2014) performed experiments with the Hadley
Centre Global Environmental Model version 1.2 (Had-
GEM1.2) coupled atmosphere-ocean-ice modeling system.
Twin experiments revealed that initializing the sea ice
model on July 1 showed improved skill in predicting the
September sea ice extent compared to a control climatolog-
ical initialization. Blanchard-Wrigglesworth and Bitz
(2014) studied fully coupled General Circulation Models
(GCMs) and sea ice-ocean models that were forced with
observation estimates derived from atmospheric reanalysis
and satellite measurements. They found that sea ice thick-
ness anomalies have a typical time scale of approximately
6–20 months with a typical length scale of 500–1000 km.
They hypothesized that the number of ice monitoring loca-
tions needed to characterize the full Arctic basin sea ice
thickness is model dependent and the variability would
vary between 3 and 14 locations. Guemas et al. (2016) pre-
sented a review of Arctic sea-ice prediction on seasonal to
decadal time-scales. Using dynamical and ensemble-based
forecasting systems designed to run on decadal time-



Fig. 1. Map of OIB (quicklook) sea ice thickness data collected during March & April 2014 overlaid on the CS2-CPOM thickness data for the period 1
March 2014–30 April 2014.
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scales, they concluded that predictability mainly originates
from persistence or advection of sea-ice anomalies, interac-
tions with ocean and atmosphere, and changes in radiative
forcing.

Schweiger et al. (2011) performed an uncertainty analy-
sis with PIOMAS to examine changes in Arctic ice volume
using a host of observations and satellite-derived data for
the period of 1979–2010. Using this approach, they esti-
mated a ‘‘conservative” value of �2.8 � 103 km3/decade.
Laxon et al. (2013) estimated changes in Arctic ice volume
for the 2003–2008 ICESat period and the winters of
2010/2011 and 2011/2012 using CS2 data and found a sig-
nificant decline of 4291 km3 for autumn and 1479 km3 in
winter ice volume during the period. Tilling et al. (2015)
used CS2 measurements for the period of 2011–2015 to
study changes in Arctic sea ice volume and found a 14%
reduction in autumn ice volume between 2010 and 2012,
but an increase of 33% and 25% respectively, for 2013
and 2014. They attributed the volume increase to the reten-
tion of thick sea ice northwest of Greenland and an associ-
ated 5% reduction in the number of melting days.
Numerous studies have examined the impact of snow
depth on ice thickness retrievals. Giles et al. (2007) found
that the largest component of the error in retrieved ice
thickness was due to uncertainties in snow depth. Ricker
et al. (2015) examined ice and snow freeboard measure-
ments from Arctic Ice Mass Balance Buoys (IMBB) and
coincident CS2 measurements from 2012 to 2014 and deter-
mined that snowfall had a significant impact on CS2 retrie-
vals of ice freeboard. Webster et al. (2014) evaluated the
spring snow depth distribution from airborne OIB observa-
tions during 2009–2013 and found a snow depth loss of
12.8 cm (37%) in the western Arctic and 18.3 cm (56%) in
the Chukchi and Beaufort seas compared to snow observa-
tions from 1937 and 1954–1991 Soviet drifting ice stations
(Warren et al., 1999). King et al. (2015) examined OIB
quick-look snow depth estimates and found reasonable
agreement with in situ observations on level ice, but
deformed FYI and MYI and surface roughness con-
tributed to higher uncertainties in the retrieved snow,
which are ultimately propagated to uncertainties in ice
thickness in the OIB product. Remaining uncertainties



Fig. 2. Monthly averaged March 2014 sea ice thickness (m) for (a) operational ACNFS (b) CS2-NASA, and (c) CS2-CPOM.

Fig. 3. Location of ULS moorings (black stars) labeled as ‘‘A”, ‘‘B”, and
‘‘D”. CRREL Ice Mass Balance buoys (colored lines) (Perovich et al.,
2017) for 2013F (black), 2014B (blue) and 2014C (red). Green and red
squares denote the start and end locations for the buoys. (For interpre-
tation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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associated with the assumptions for the densities of ice and
snow, used to convert freeboard measurements to thick-
ness, also contribute to small uncertainties in the derived
ice thickness products (Giles et al., 2007).

Johnson et al. (2012) examined forecast skill of modeled
monthly ice thickness in 6 ice modeling systems as part of
the Arctic Ocean Model Intercomparison Project utilizing
gridded ice thickness from ICESat (2004–2008), EM
(2001–2009), ice draft data from 24 upward looking sonar
(ULS) moorings in the Beaufort Sea, Fram Strait and
Greenland Sea, in situ drill hole, and submarine data from
1975 to 2000. Each modeling system used different forcing,
boundary conditions, and numerical methods. They found
that the models, on average, overestimated the thickness of
ice thinner than 2 m, and underestimated the thickness of
ice thicker greater than 2 m. Collow et al. (2015) found
an improved sea ice seasonal cycle when their coupled
modeling system was initialized with ice thickness from
the PIOMAS model (Schweiger et al., 2011) which assimi-
lated ice concentration and sea surface temperature, but
not actual ice thickness data.

Lisæter et al. (2007) assimilated synthetic CryoSat sea
ice thickness into a coupled ice-ocean model using an
Ensemble Kalman Filter (EnKF). They found that ice
thickness affected sea surface temperature, surface salinity
and ice concentration and showed that ice thickness obser-
vations can have a significant impact on ice thickness esti-
mates for the modeling system. Yang et al. (2014) utilized a
Local Singular Evolutive Interpolated Kalman (LSEIK)
filter in assimilating Soil Moisture Ocean Salinity (SMOS)
ice thickness data into a coupled ice-ocean modeling sys-
tem. In their 3-month study period beginning November
1, 2011, they found improved 24-h ice thickness forecasts
with reduced biases when using this data and technique.
Lindsay et al. (2012) performed seasonal forecasts of the
September 2012 ice extent using ensemble predictions with
the PIOMAS model initialized with a corrected ice thick-
ness distribution based on ice thickness observations from
OIB and the Seasonal Ice Zone Observation Network (SIZ-
ONet). They found lower ice extent in the Pacific sector
and higher extent in the Atlantic sector compared to uncor-
rected forecast runs.

Our study is inspired by the culmination of years of
research that has led to readily-available satellite-derived
ice thickness products that can be used to initialize and
improve the skill in operational sea ice forecasting systems.
The study by Yang et al. (2014) motivated our research by
demonstrating that the assimilation of SMOS ice thickness
reduced the ice thickness RMSE significantly for 24-h fore-
casts. Improvements such as these will not only be applica-
ble for synoptic-scale periods, but seasonal intervals as
well, such as a 4–6 month prediction of the September min-
imum sea ice extent. While this paper addresses the initial-
ization of a sea ice model with satellite-derived ice
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thickness, ongoing research addressing the assimilation of
daily near real-time ice thickness data should yield signifi-
cant advances in Arctic sea ice forecasting. The techniques
addressed in this paper and the data sources used in our
study should be applicable for any sea ice model.

This paper is structured as follows: Section 2 provides a
background on the modeling system used in this study; Sec-
tion 3 describes the techniques used to produce the ice
thickness fields in this modeling study. Section 4 describes
the data sources used in this study; Sections 5 presents an
overview of the modeling experiments and discussion. A
summary and conclusion is provided in Section 6.

2. Background

The modeling system used in this study is the Arctic Cap
Nowcast/Forecast System (ACNFS) (Posey et al., 2010,
2015; Metzger et al., 2014; Hebert et al., 2015), consisting
of the Los Alamos Community Ice CodE (CICE, Hunke
and Lipscomb, 2008) coupled to the HYbrid Coordinate
Ocean Model (HYCOM) (Chassignet et al., 2003, 2009;
Metzger et al., 2014). Both CICE and HYCOM are on a
the subset of a global tripole grid that is poleward of 40�
N with a horizontal resolution of approximately 3.5 km
at the North Pole. HYCOM has 32 vertical levels for the
ocean. CICE employs five thickness categories; within each
thickness category are four ice layers and one snow layer.
Satellite-derived sea surface temperature, ocean and ice-
tethered profiler temperature and salinity, and ice concen-
tration data are assimilated into the ACNFS via the Navy
Coupled Ocean Data Assimilation (NCODA) system
(Cummings and Smedstad, 2013; Posey et al., 2015).
NCODA utilizes a 3-D variational analysis (3DVAR)
method to assimilate observations into the model. Ice
thickness is not assimilated into the CICE model, but
SSMI-based sea ice concentration is assimilated near the
ice edge. HYCOM fields of sea surface temperature, sea
surface salinity, and surface ocean currents are exchanged
hourly with CICE using the Earth System Modeling
Framework (ESMF) (Theurich et al., 2016); whereas CICE
passes ice concentration, ice stress, heat flux through the
ice, ice freeze/melt heat flux and net water flux to
HYCOM. The ACNFS (both ocean and ice components)
is run with atmospheric forcing (37 km (T359) resolution)
from the NAVy Global Environmental Modeling System
(NAVGEM) (Hogan et al., 2014). Precipitation in the
CICE model is based on monthly climatological precipita-
tion rates from the Global Precipitation Climatology Pro-
ject (Adler et al., 2003) for the period 1979–2002.
Precipitation rate is converted to a snowfall rate if the sur-
face air temperature is at or below freezing. Drifting of
snow is not incorporated into CICE. A monthly-varying
climatological river database (Barron and Smedstad,
2002) is used to specify river discharge into the Arctic
basin. Melt ponds are not enabled for the studies presented
in this paper. The ACNFS CICE component was spun-up
(without data assimilation) from a constant sea ice thick-
ness of 3 m for the period of 2005–2007 using the Navy
Operational Global Atmospheric Prediction System
(NOGAPS) atmospheric forcing until a steady state was
reached. The model continued to run with data assimila-
tion for the period of 2007–2013 with NOGAPS
(Rosmond et al., 2002). In 2013 the model became opera-
tional and since then NAVGEM has been used to force
the system. The model southern boundary is at 40�N where
open ocean boundary conditions are provided by the Glo-
bal Ocean Forecast System (GOFS 3.0) (Metzger et al.,
2014) which has the same resolution as ACNFS. The
ACNFS, developed by the Naval Research Laboratory
Oceanography Division, was transitioned into operations
at the Naval Oceanographic Office (NAVOCEANO) in
September 2013. The modeling system is run once per
day producing 7-day forecasts of both ice and ocean fields
such as ice thickness, ice concentration, ice drift, sea sur-
face temperature, sea surface salinity and ocean currents.
See Hebert et al. (2015) for a more complete description
of ACNFS.

3. Technique

The Ku-band (13.5 GHz) Synthetic Aperture Interfero-
metric Radar Altimeter (SIRAL) on-board the European
Space Agency’s (ESA) CS2 satellite represents an advance-
ment on previous generation satellite radar altimeters.
With an instrument footprint of approximately 380 m
along track by 1650 m across track, as well as the �300
m along track sampling intervals, it represents a significant
improvement over the �10 km footprints of the heritage
satellite radar altimeters and is more suitable for sea ice
floe/lead discrimination and sea ice freeboard measure-
ments (Wingham et al., 2006). Coupled with the 92� orbital
inclination of CS2, SIRAL provides Arctic-wide routine
observations of the sea ice freeboards and thickness up to
the 88�N latitude. Three independent CS2 sea ice data pro-
cessing systems have been developed by the Centre for
Polar Observation and Modelling (CPOM) (Laxon et al.,
2013), NASA’s Goddard Space Flight Centre (GSFC)
(Kurtz et al., 2014), and the Alfred Wegener Institute
(AWI) (Ricker et al., 2014). The sea ice thickness data
records generated by these three CS2 sea ice data systems
agree reasonably well with each other in terms of spatial
distribution, and provide further evidence for the long term
decline of ice volume in the central Arctic. Nevertheless,
significant differences exist in the estimated ice thickness
among these three data sets. In addition, the summer
months and the marginal ice zone are excluded from all
three data sets due to snow/ice melt and open water signal
contamination. Current efforts are on-going to examine
different algorithm assumptions and their impacts on ice
thickness retrievals (Ricker et al., 2014; Price et al., 2015;
Tilling et al., 2016a, 2016b). From an ice modeling perspec-
tive, it is desirable to assimilate ice thickness data to
improve sea ice prediction. On the other hand, compar-
isons of impacts by assimilating different ice thickness data
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sets may also shed light on the retrieval algorithms them-
selves. To this end, we performed ice thickness reinitializa-
tion for coupled model reanalyses using the CPOM and
NASA data sets. The AWI data set was not available at
the time of the model runs but will be included in a future
study.

3.1. Snow impacts on freeboard retrievals

CS2 freeboard is converted to ice thickness by estimat-
ing the snow load based on the Warren snow climatology
(Warren et al., 1999) (W99). Utilizing snow radar data,
Kurtz and Farrell (2011) found the snow cover to be
approximately 50% lower than W99 on FYI ice. As a
result, in processing the CS2 freeboard data, the W99 snow
depths are reduced by 50% before converting the freeboard
measurements to thickness of FYI ice (Laxon et al., 2013).
MYI snow cover is based on the original W99 values, how-
ever some CS2 datasets apply a pan-Arctic mean climatol-
ogy (Tilling et al., 2015) while others use explicit
climatological values for MYI and a scale factor for FYI
(Kwok and Cunningham, 2015; Ricker et al., 2014, 2015).

3.2. CPOM Arctic sea ice thickness data

Laxon et al. (2013) generated the first estimate of Arctic
sea ice thickness and volume fromCS2. Their algorithm first
uses the CS2 Level 1B radar echo data to separate measure-
ments of sea ice floes and leads; then determines ice floe and
lead surface elevations by identifying the mean scattering
horizon on the leading edge of the radar return waveform.
Laxon et al. (2013) select empirically the 70% threshold of
the peak power as the mean scattering horizon to track the
mean surface horizon. The freeboard observations can be
obtained and converted to ice thickness through equilibrium
of the weight of the ice freeboard and snow to the buoyancy
of the submerged ice. Since coincident snowobservations are
not available Arctic-wide, climatological values of snow
depth and density (Warren et al., 1999) are used in the
freeboard-to-thickness conversion. To extend the results of
Laxon et al. (2013) outside of the central Arctic to regions
where the climatology is ill-constrained by in situ measure-
ments, CPOM now apply the mean snow depth and density
for each month and halve the snow depth over FYI. A com-
prehensive validation (Tilling et al., 2015) suggests that the
CS2 sea ice thickness estimates, when averaged on a large
scale or over a full winter growth season, agree within 10–
20 cm with independent thickness measurements from the
NASA OIB (Kurtz et al., 2013), the ESA CRYOsat Valida-
tion Experiment (CryoVEx) campaign (Haas et al., 2009),
and the Beaufort Gyre Exploration Project (BGEP)
(Krishfield and Proshutinsky, 2006).

In this study, we use the monthly composited CPOM
CS2 sea ice thickness data on 5 km square polar stereo-
graphic grid. In order to match the spatial resolution of
the NASA data set, the CPOM data are projected and
averaged on to a 25 km polar stereographic grid. Because
the freeboard-to-thickness conversion is linear, the abso-
lute error of ice thickness measurement does not vary with
ice thickness and/or snow depth, thus the averaging is per-
formed with equal weighting drop-in-the-bucket method.
Accordingly, the ice thickness variance is reduced by a fac-
tor of the square root of the number of observations in
each 25 km polar stereographic grid cell. We estimate a
thickness uncertainty of �25% for the 5 km gridded thick-
ness (Tilling et al., 2016a, 2016b), of which the largest con-
tributor is snow depth uncertainty (Tilling et al., 2015).

3.3. NASA Arctic sea ice thickness data

Kurtz et al. (2014) developed a CS2 physical model and
waveform fitting technique (CS2WfF) that avoids the use
of an empirical threshold retracker. Different from the
CPOM CS2 data processing system, this NASA CS2WfF
algorithm first calculates monthly mean freeboard on the
25 km polar stereographic grid, which is further smoothed
to 125 km spatial resolution. Subsequently the sea ice
thickness is retrieved from the 25 km CS2 freeboard data
set through the hydrostatic balance based freeboard-to-
thickness conversion. This algorithm is used to construct
the NASA CS2WfF (Kurtz and Harbeck, 2017) Arctic
sea ice thickness data. When comparing OIB airborne
observations to ice thickness estimates derived from the
NASA CS2WfF and a simple 50% threshold retracker,
Kurtz et al. (2014) showed that the CS2WfF technique
reduced their ice thickness bias. The estimated total ice
thickness uncertainty is about 60 cm with contribution
from a �6 cm freeboard uncertainty. Uncertainties in snow
depth are estimated at 4–6.2 cm in Warren et al. (1999), but
the uncertainty contribution will scale up in the conversion
of freeboard to thickness. This is also true for freeboard
uncertainty.

3.4. Implementation of ice thickness fields into the model

CICE v4.0 was modified to utilize the satellite-derived
ice thickness field to reinitialize the ice model. Given the
model and observed total area average ice thickness: (a)
if the model or observed area thickness <1 cm, no change
is made; (b) otherwise we multiply each sea ice category
volume (we use 5 thickness categories) by the ratio of
observed over modeled sea ice thickness and directly insert
the result. The same scale factor is applied to sea ice
enthalpy. In this procedure, all the categories are changed
by the same thickness fraction. If this pushes a category
out of its range, a routine within CICE v4.0 is called to
rebin the ice thickness categories.

Fig. 2 depicts the initial ice thickness fields for the mod-
eling studies presented in this paper. Fig. 2a shows the
ACNFS monthly averaged ice thickness (m) for March
2014. Fig. 2b shows the monthly averaged ice thickness
field for March 2014 derived from CS2-based on the NASA
algorithm (CS2-NASA, referred to as CS2WtF in previous
section), while Fig. 2c depicts the monthly averaged ice



Fig. 4. Map of 288 IABP drifters for the period of March 15, 2014–September 30, 2015. Red region indicates Bering/Beaufort/Chukchi Sea domain for ice
drift analysis. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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thickness field based on the CS2 CPOM algorithm for
March 2014. The March 2014 monthly averaged anomaly
between CS2 and ACNFS is added to ACNFS ice thick-
ness on March 15, 2014 for the two reanalysis studies pre-
sented in this paper. If the observed ice concentration
indicates ice is present, while the CS2 ice thickness field
indicates no ice is present, the data assimilation system
adds 0.5 m of ice at these locations. There are noticeable
differences in ice thickness along the Canadian Archipe-
lago, and in the Bering and Beaufort Seas from the
ACNFS versus the NASA and CPOM CS2-based ice thick-
ness fields. Overall, the NASA and CPOM CS2-based
fields show a thinner ice cover in the Beaufort Sea. There
are also noticeable differences in the Laptev and East Siber-
ian Seas where CS2-CPOM data set shows few ice thick-
ness estimates.
4. Comparative data sources

4.1. Upward looking sonar

Upward Looking Sonar (ULS) ice draft data from the
Woods Hole Oceanographic Institution (WHOI) BGEP
(Krishfield and Proshutinsky, 2006) for mooring locations
A, B, and D (Fig. 3) are used in this study for the period of
March 15, 2014–September 30, 2015. The raw data are
sampled at 2 s intervals. Ice draft is converted to ice thick-
ness by multiplying the draft by 0.89 (Rothrock et al.,
2003). A daily 24-h average of the ULS data was calculated
for comparisons against daily CICE model output.

4.2. Ice Mass Balance Buoys (IMBB)

‘‘Preliminary” IMBB data from the Cold Regions
Research Engineering Laboratory (CRREL) is used in
our study. The buoys (Richter-Menge et al., 2006;
Perovich et al., 2017) report ice thickness typically at 4-h
intervals. In this study, CICE ice thickness is interpolated
to daily IMBB locations at 00Z (or 03Z in limited cases)
via a natural neighbor method.

4.3. NASA Operation IceBridge

NASA IceBridge ‘‘quick-look” ice thickness transects
from missions flown on specific dates in March/April in
2014 are used in our study. IceBridge observations are fil-



Fig. 5. Time series of modeled ice thickness (m) versus ULS moorings ice
thickness observations (m) from March 15, 2014–October 2015. Black line
represents observation, ACNFS is shown in blue, ACNFS reanalysis
initialized with CS2-CPOM in green, and ACNFS reanalysis initialized
with CS2-NASA in red. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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tered by averaging all observations with a freeboard uncer-
tainty less than 0.1 m within 20 km of each observation.
Modeled CICE ice thickness was interpolated to the
IceBridge observation locations via a natural neighbor
method.

4.4. International Arctic Buoy Program (IABP)

Observed ice drift velocities are derived from daily IABP
buoy locations. CICE drift components are interpolated to
the IABP locations via a natural neighbor method. The
IABP speed is determined by the distance the buoy traveled
over 24 h. See Hebert et al. (2015) for more details on the
drift calculations. In this study, 288 buoys are used.
Fig. 4 depicts the drifters used in this study and the domain
for the Bering/Chukchi/Beaufort Sea.

5. Discussion

5.1. Experiments

A series of reanalysis experiments are performed for the
period of March 15, 2014–September 30, 2015. The
‘‘control” experiment consisted of the ACNFS which was
run operationally in real time. This control experiment,
referred to as ‘‘ACNFS” did not have any adjustments
made to the model’s ice thickness field. Two experiments
CS2-CPOM and CS2-NASA, are identical to the control
run, except that the ice thickness field was corrected (one
time only) on March 15, 2014 based on the CS2 (CPOM)
and CS2 (NASA) monthly ice thickness anomaly fields as
described in Section 3.3. In all three cases the same NAV-
GEM atmospheric forcing is used and sea ice concentra-
tion and various ocean quantities are assimilated daily. In
this study, we evaluate the model skill in predicting ice
thickness versus ULS mooring data, IMBB, and NASA
IceBridge transect data from the 2014 campaign. Fig. 3
depicts the locations of the 3 BGEP ULS stations in the
Beaufort Sea and CRREL IMBB drifting in the ice during
the study period. Much of this study focuses on the Bering,
Chukchi, and Beaufort Seas, where a majority of the obser-
vational data was available.

5.2. ULS analysis

Ice draft data from three BGEP ULS moorings is used
to evaluate the ice thickness distribution in the Navy’s
ACNFS model for an 18-month period beginning March
15, 2014. In this study, the CICE thickness at the grid point
nearest to the daily mean observation at the ULS mooring
is used in this analysis. Fig. 5 presents a time series of mod-
eled ice thickness at the 3 ULS locations. The blue line
denotes the operational ACNFS (no CS2 initialization)
ice thickness at the mooring locations. The red and green
lines represent experiments where the model was initialized
with CS2 ice thickness anomalies from NASA and CPOM
respectively. It is evident that overall, the operational
ACNFS model has thicker ice throughout the 18-month
period. Through October 2014, the CS2-NASA initializa-
tion experiment appears to compare best against the obser-
vational data, although the CS2-CPOM reanalysis shows
lower biases through June 2014 (see Table 1). Since all 3
model simulations use identical atmospheric forcing, it is
not surprising to see the ice thickness from the CS2- CPOM
and NASA experiments trend toward the ACNFS ice
thickness by late Spring 2015. Examination of model ani-
mations for this region showed advection of thicker ice into
the Beaufort Sea, which contributed to the thicker ice
beginning in October 2014, as seen at ULS station A.

Fig. 6 depicts a series of scatter plots of observed versus
modeled ice thickness for all three moorings (combined) for
three-month, seasonal periods beginning in April–June
2014, with summary statistics shown in the lower right of
each panel. The left column represents the ACNFS exper-
iment, middle column is CS2-CPOM, and the right column
is CS2-NASA. It is evident that the ACNFS results have a
positive bias throughout the 1-year period. Table 1 presents
summary statistics of the combined ULS data versus the
3 ACNFS experiments. The table is divided into seasonal
(3-month) periods beginning in April 1–June 30, 2014.



Table 1
Seasonal comparisons of ULS ice thickness (m) (at all locations) versus ACNFS, ACNFS simulation initialized with CS2-NASA,
and ACNFS simulation initialized with CS2-CPOM. Last rows represent averages over the 18-month period. Grey boxes in
columns on right indicate best performance.
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For this first season, both the CPOM and NASA experi-
ments show low biases of near ±20 cm with a RMSE of
0.44 m. Surprisingly, all three experiments show poor cor-
relation for this period. We attribute this to modulations in
the observed ice thickness which are not captured well by
the model. The summer period of July 1–September 30,
2014 shows that the mean ice thickness from the CS2-
NASA reanalysis had the identical mean thickness com-
pared to the ULS means, with the smallest bias (�0.01)
and RMSE (0.28) and highest correlation at 0.84. The
CS2-CPOM reanalysis showed thicker ice than CS2-
NASA, but demonstrated a noticeable improvement over
the ACNFS operational results. The autumn period from
October 1–December 31, 2014 shows that the CS2-NASA
reanalysis outperforms ACNFS and CS2-CPOM. By the
winter period of January 1–March 31, 2015, the bias and
RMSE for both CS2 reanalysis studies continue to
increase. While the ACNFS results show a better correla-
tion coefficient (0.42), the CS2- NASA and CPOM reanal-
yses continue to outperform the ACNFS in terms of ice
thickness, bias and RMSE. The last section in the table
shows the mean statistics for the entire 18-month period.
Overall, the reanalysis initialized with CS2-NASA showed
the lowest bias (0.47) and RMSE (0.89), although it also
exhibited the lowest correlation (0.64).
5.3. IMBB results

Fig. 7 depicts model/data comparisons against 3
CRREL IMBB deployed in the Beaufort Sea during this
study period (Fig. 3). All three buoys generally drift toward
the west-northwest, except for 2013F which has a mean
drift toward the northwest. The operational ACNFS ice
thickness is approximately 1.5 m too thick for much of
the study period. The CS2-NASA and CS2-CPOM reanal-
yses show much better agreement to observations at 2013F
for the period of March 2014 through late October, 2014.
Afterwards, the modeled ice thickness begins to get thicker
compared to observation. At 2014B and 2014C, the CS2-
NASA reanalysis shows a remarkable agreement to the
observations through June 2014. Afterwards, the CS2-
CPOM reanalysis more closely matches the observed ice
thickness. Table 2 summarizes these results for the entire
model/data comparison period. Overall, CS2-NASA shows



Fig. 6. Scatter plots of observed versus model ice thickness (m) at ULS moorings ice thickness observations in seasonal groupings. Top row represents
Spring 2014 (April–June), followed by Summer 2014 (July–September), Autumn 2014 (October–December), and Winter 2015 (January–March). Column
on left represents ACNFS simulations, followed by ACNFS reanalysis initialized with CS2-CPOM (middle), and ACNFS reanalysis initialized with CS2-
NASA (right).
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Fig. 7. Time series of modeled ice thickness (m) versus observed CRREL
Ice Mass Balance Buoy thickness for inclusive periods of March 15, 2014–
Sept 2015. Blue line represents ACNFS, green line denotes ACNFS
reanalysis initialized with CS2-CPOM, and red line represents ACNFS
Reanalysis initialized with CS2-NASA. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web
version of this article.)
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the best agreement to with the observations for mean thick-
ness, lowest bias and RMSE. The CS2-CPOM reanalysis
showed the highest correlation (tie at 2014C in R2). We
also looked at a Central Arctic IMBB 2015D (not shown),
and it showed very similar results between all three model
studies presented in this paper. This IMBB was deployed in
April 2015, about 1 year after our study began. The
model/data comparisons showed excellent agreement with
observations until July 2015, when the modeled ice thick-
ness began to get thicker versus the observed ice thickness.
This provided some insight suggesting that the CS2 ice
thickness product (from either CPOM or NASA) was real-
istic for the Central Arctic at the beginning of our study
period.
5.4. NASA IceBridge results

To further assess the accuracy of the CS2 ice thickness
products from both NASA and CPOM, we compared the
modeled ice thickness in this study against NASA OIB data
collected in March and April 2014. Fig. 8 depicts the eight
IceBridge transects used in our study. Fig. 9 depicts a scat-
ter plot of observed ice thickness from NASA’s quick-look
data set versus model results from ACNFS, CS2-CPOM,
and CS2-NASA. Both the CS2- NASA and CPOM results
show a better comparison with modeled ice thickness.
Table 3 presents statistics for these comparisons. The
CS2-NASA reanalysis study showed the closest match to
the mean calculated for these transects (2.61 versus 2.57
m), with a lower bias at �0.01 m. The RMSE and correla-
tion coefficients for both CS2 reanalyses are very similar.

5.5. IABP results

We examined ice drift for the full Pan-Arctic from the
ACNFS (operational, CS2-CPOM, and CS2-NASA) simu-
lations versus ice drift calculated from the 288 IABP buoys
(Fig. 4) for the period of March 15, 2014–September 30,
2015. Over 44,000 ice drift observations were examined in
this analysis. Overall, the ACNFS ice drift magnitude
(not shown) was in better agreement with observations
with an error of 9.9% versus errors of 11.9% (CS2-
CPOM) and 12.9% (CS2-NASA). The CS2 experiments
are within approximately 1.2–1.3 cm/s in magnitude of
the calculated IABP drift over the 18-month period. We
further investigated the ice drift in the Bering/Chukchi/
Beaufort Seas for this same period. Table 4 presents a sum-
mary of the analysis in which this subset of 26,806 IABP
observations were examined. Similar to the Pan-Arctic
region, the CS2 experiments exhibit faster ice drift than
ACNFS and observations. Since the ice is overall thinner
and wind speeds are the same as the operational ACNFS
runs, one expects to see the faster drifts. We also examined
the drift during the summer/autumn months in 2014 and it
showed that the CS2-NASA and CS2-CPOM experiments
exhibited a 29% and 24% reduction in ice drift magnitude
error, respectively, compared to ACNFS (see Table 5).
We also see improvement during the period of July–
September, 2015 as well, but to a lesser extent. Summer-
time improvements are also evident in the Greenland/Nor-
wegian Seas (not shown).

6. Conclusion and plans

Previous studies (Holland et al. 2011; Day et al., 2014)
showed the importance of sea ice model initialization with
ice thickness fields in predicting the ensuing summer mini-
mum ice extent. In this study, the U.S. Navy’s coupled sea-
ice modeling system ACNFS is initialized with monthly sea
ice thickness fields obtained from two different CS2 data
sources which are derived using differing techniques. The
CS2-CPOM dataset is based on an empirical leading-edge
70% threshold retracker and is interpolated from a 5 km
square polar stereographic grid and averaged onto a 25
km polar stereographic grid for this study. The CS2-
NASA dataset is based on a threshold retracking algorithm
and is gridded on a 25 km stereographic grid.

Our results are in good agreement with the ice thick-
ness RMSE shown by Yang et al. (2014) where they



Table 2
Summary statistics for CRREL Ice Mass Balance Buoy ice thickness (m) versus ACNFS, ACNFS simulation
initialized with CS2-NASA, and ACNFS simulation initialized with CS2-CPOM. Grey boxes in columns on
right indicate best performance.

Fig. 8. NASA Operation IceBridge tracks used in analysis versus modeled ice thickness for March/April 2014.
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ACNFS CS2-NASACS2-CPOM

Mean (m) 2.85
Bias  0.17
RMSE 0.97
R2 0.49

Mean (m) 2.61
Bias -0.01
RMSE 0.96
R2 0.51

Mean (m) 3.23
Bias  0.62
RMSE 1.36
R2 0.22

Fig. 9. Scatter plots of observed NASA IceBridge (2014) ice thickness (m) versus ice thickness from ACNFS (left), ACNFS CS2-CPOM initialized
simulations (middle), and ACNFS initialized with CS2-NASA (right).

Table 3
Summary statistics for NASA IceBridge (March/April 2014) thickness (m) versus ACNFS, ACNFS simulation
initialized with NASA-CS2, and ACNFS simulation initialized with CS2-CPOM. Grey boxes in columns on
right indicate best performance.

Table 4
Mean ice drift statistics for the Bering/Chukchi/Beaufort Sea for the period of March 15, 2014–September 30,
2015. Comparisons consist of observed ice drift from IABP-derived ice drift versus modeled ice drift. Greyed
boxes indicate smallest error against observations.
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assimilated SMOS ice thickness in the MITgcm model
for a 3-month period from November 2011–January
2012. Our study shows that the model’s ice thickness is
significantly improved compared against observed
moored, drifting and airborne measurements using both
the NASA and CPOM CS2 initialization versus the oper-
ational ACNFS which is not initialized with these data
sources. In addition, the modeling system initialized with
both CS2 data sets exhibits skill up to the first 6 months
when compared against ULS and IMBB data. In partic-
ular, based on the data periods examined here, the CS2-
NASA reanalysis shows a vastly improved average ice



Table 5
Monthly-averaged Ice drift magnitude (cm/s) for the Bering/Chukchi/Beaufort Sea from IABP-derived ice drift
versus modeled ice drift for June–November, 2014. Greyed boxes indicate closest agreement to observations.
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thickness bias (versus ACNFS) to less than 50 cm for the
full 18-month period when comparing against all the
moored and drifting data. The CS2-CPOM data is pro-
vided on a 5 km grid and here we interpolated onto a
25 km grid for consistency with the CS2-NASA data,
although the spatial resolution of the NASA data is
effectively 125 km due to smoothing. We did not perform
experiments with the 5 km CPOM ice thickness data or
smooth the 25 km gridded CS2-CPOM data, so we are
unable to comment on the impact of a different spatial
resolutions on the model results.

An analysis of ice drift data from the IABP shows that
for the Pan-Arctic and Bering/Beaufort/Chukchi (BBC)
regions, the operational ACNFS modeling system slightly
outperformed the CS2-initialized experiments. However,
we see an improvement during the summer/autumn period
in 2014 in the BBC region where the ice drift magnitude
from both the CS2-NASA and CS2-CPOM initialization
outperformed the operational model.

This paper addresses the initialization of a sea ice model
using CS2 data from two different sources. Ongoing
research is investigating the assimilation of daily ice thick-
ness data from altimeters onboard CS2 and Sentinel-3A.
Modelers will need to examine tradeoffs between utilizing
near-realtime data provided by sources such as CS2-
CPOM versus ice thickness products from providers such
as CS2-NASA (hosted by NSIDC) which has a latency of
�1 month. Future plans include investigating the reinitial-
ization of our modeling system using an autumn (October
or November) period in which the ice is thinner than the
March initialization period studied here. The same data
sources discussed in this paper (CS2-NASA and CS2-
CPOM) will be used. We also plan to test a merged CS2/
SMOS ice thickness product, since CS2 is more accurate
for ice greater than approximately 0.5 m thickness while
SMOS is more appropriate for thinner ice. Lastly, we also
plan to perform tests with the anticipated ICESat-2 ice
thickness fields, which could also be used to reinitialize
the Navy’s ice modeling systems.
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