7,408 research outputs found

    Photospheric activity, rotation, and star-planet interaction of the planet-hosting star CoRoT-6

    Full text link
    The CoRoT satellite has recently discovered a hot Jupiter that transits across the disc of a F9V star called CoRoT-6 with a period of 8.886 days. We model the photospheric activity of the star and use the maps of the active regions to study stellar differential rotation and the star-planet interaction. We apply a maximum entropy spot model to fit the optical modulation as observed by CoRoT during a uninterrupted interval of about 140 days. Photospheric active regions are assumed to consist of spots and faculae in a fixed proportion with solar-like contrasts. Individual active regions have lifetimes up to 30-40 days. Most of them form and decay within five active longitudes whose different migration rates are attributed to the stellar differential rotation for which a lower limit of \Delta \Omega / \Omega = 0.12 \pm 0.02 is obtained. Several active regions show a maximum of activity at a longitude lagging the subplanetary point by about 200 degrees with the probability of a chance occurrence being smaller than 1 percent. Our spot modelling indicates that the photospheric activity of CoRoT-6 could be partially modulated by some kind of star-planet magnetic interaction, while an interaction related to tides is highly unlikely because of the weakness of the tidal force.Comment: 9 pages, 7 figures, accepted to Astronomy & Astrophysic

    Measuring stellar differential rotation with high-precision space-borne photometry

    Full text link
    We introduce a method of measuring a lower limit to the amplitude of surface differential rotation from high-precision, evenly sampled photometric time series. It is applied to main-sequence late-type stars whose optical flux modulation is dominated by starspots. An autocorrelation of the time series was used to select stars that allow an accurate determination of starspot rotation periods. A simple two-spot model was applied together with a Bayesian information criterion to preliminarily select intervals of the time series showing evidence of differential rotation with starspots of almost constant area. Finally, the significance of the differential rotation detection and a measurement of its amplitude and uncertainty were obtained by an a posteriori Bayesian analysis based on a Monte Carlo Markov Chain approach. We applied our method to the Sun and eight other stars for which previous spot modelling had been performed to compare our results with previous ones. We find that autocorrelation is a simple method for selecting stars with a coherent rotational signal that is a prerequisite for successfully measuring differential rotation through spot modelling. For a proper Monte Carlo Markov Chain analysis, it is necessary to take the strong correlations among different parameters that exist in spot modelling into account. For the planet-hosting star Kepler-30, we derive a lower limit to the relative amplitude of the differential rotation of \Delta P / P = 0.0523 \pm 0.0016. We confirm that the Sun as a star in the optical passband is not suitable for measuring differential rotation owing to the rapid evolution of its photospheric active regions. In general, our method performs well in comparison to more sophisticated and time-consuming approaches.Comment: Accepted to Astronomy and Astrophysics, 15 pages, 13 figures, 4 tables and an Appendi

    Daily variability of Ceres' Albedo detected by means of radial velocities changes of the reflected sunlight

    Get PDF
    Bright features have been recently discovered by Dawn on Ceres, which extend previous photometric and Space Telescope observations. These features should produce distortions of the line profiles of the reflected solar spectrum and therefore an apparent radial velocity variation modulated by the rotation of the dwarf planet. Here we report on two sequences of observations of Ceres performed in the nights of 31 July, 26-27 August 2015 by means of the high-precision HARPS spectrograph at the 3.6-m La Silla ESO telescope. The observations revealed a quite complex behaviour which likely combines a radial velocity modulation due to the rotation with an amplitude of approx +/- 6 m/s and an unexpected diurnal effect. The latter changes imply changes in the albedo of Occator's bright features due to the blaze produced by the exposure to solar radiation. The short-term variability of Ceres' albedo is on timescales ranging from hours to months and can both be confirmed and followed by means of dedicated radial velocity observations.Comment: 5 pag, 1fig, two tables, MNRAS Letters 201

    Microscopic calculations of double and triple Giant Resonance excitation in heavy ion collisions

    Get PDF
    We perform microscopic calculations of the inelastic cross sections for the double and triple excitation of giant resonances induced by heavy ion probes within a semicalssical coupled channels formalism. The channels are defined as eigenstates of a bosonic quartic Hamiltonian constructed in terms of collective RPA phonons. Therefore, they are superpositions of several multiphonon states, also with different numbers of phonons and the spectrum is anharmonic. The inclusion of (n+1) phonon configurations affects the states whose main component is a n-phonon one and leads to an appreacible lowering of their energies. We check the effects of such further anharmonicities on the previous published results for the cross section for the double excitation of Giant Resonances. We find that the only effect is a shift of the peaks towards lower energies, the double GR cross section being not modified by the explicity inclusion of the three-phonon channels in the dynamical calculations. The latters give an important contribution to the cross section in the triple GR energy region which however is still smaller than the experimental available data. The inclusion of four phonon configurations in the structure calculations does not modify the results.Comment: Revtex4, to be published in PR

    Microscopic description of Coulomb and nuclear excitation of multiphonon states in 40^{40}Ca + 40^{40}Ca collisions

    Get PDF
    We calculate the inelastic scattering cross sections to populate one- and two-phonon states in heavy ion collisions with both Coulomb and nuclear excitations. Starting from a microscopic approach based on RPA, we go beyond it in order to treat anharmonicities and non-linear terms in the exciting field. These anharmonicities and non-linearities are shown to have important effects on the cross sections both in the low energy part of the spectrum and in the energy region of the Double Giant Quadrupole Resonance. By properly introducing an optical potential the inelastic cross section is calculated semiclassically by integrating the excitation probability over all impact parameters. A satisfactory agreement with the experimental results is obtained.Comment: 20 pages, 2 figures, revtex, to be published in Phys. Rev.

    Nearly exact discrepancy principle for low-count poisson image restoration

    Get PDF
    The effectiveness of variational methods for restoring images corrupted by Poisson noise strongly depends on the suitable selection of the regularization parameter balancing the effect of the regulation term(s) and the generalized Kullback–Liebler divergence data term. One of the approaches still commonly used today for choosing the parameter is the discrepancy principle proposed by Zanella et al. in a seminal work. It relies on imposing a value of the data term approximately equal to its expected value and works well for mid-and high-count Poisson noise corruptions. However, the series truncation approximation used in the theoretical derivation of the expected value leads to poor performance for low-count Poisson noise. In this paper, we highlight the theoretical limits of the approach and then propose a nearly exact version of it based on Monte Carlo simulation and weighted least-square fitting. Several numerical experiments are presented, proving beyond doubt that in the low-count Poisson regime, the proposed modified, nearly exact discrepancy principle performs far better than the original, approximated one by Zanella et al., whereas it works similarly or slightly better in the mid-and high-count regimes

    Radiation and magnetic field effects on new semiconductor power devices for HL-LHC experiments

    Full text link
    The radiation hardness of commercial Silicon Carbide and Gallium Nitride power MOSFETs is presented in this paper, for Total Ionizing Dose effects and Single Event Effects, under gamma, neutrons, protons and heavy ions. Similar tests are discussed for commercial DC-DC converters, also tested in operation under magnetic field

    Irreversible magnetization under rotating fields and lock-in effect on ErBa_2Cu_3O_7 single crystal with columnar defects

    Get PDF
    We have measured the irreversible magnetization M_i of an ErBa_2Cu_3O_7 single crystal with columnar defects (CD), using a technique based on sample rotation under a fixed magnetic field H. This method is valid for samples whose magnetization vector remains perpendicular to the sample surface over a wide angle range - which is the case for platelets and thin films - and presents several advantages over measurements of M_L(H) loops at fixed angles. The resulting M_i(\Theta) curves for several temperatures show a peak in the CD direction at high fields. At lower fields, a very well defined plateau indicative of the vortex lock-in to the CD develops. The H dependence of the lock-in angle \phi_L follows the H^{-1} theoretical prediction, while the temperature dependence is in agreement with entropic smearing effects corresponding to short range vortex-defects interactions.Comment: 7 pages, 6 figures, to be published in Phys. Rev.
    corecore