56 research outputs found

    Scene construction impairments in Alzheimer's disease – A unique role for the posterior cingulate cortex

    Get PDF
    Episodic memory dysfunction represents one of the most prominent and characteristic clinical features of patients with Alzheimer's disease (AD), attributable to the degeneration of medial temporal and posterior parietal regions of the brain. Recent studies have demonstrated marked impairments in the ability to envisage personally relevant events in the future in AD. It remains unclear, however, whether AD patients can imagine fictitious scenes free from temporal constraints, a process that is proposed to rely fundamentally upon the integrity of the hippocampus. The objective of the present study was to investigate the capacity for atemporal scene construction, and its associated neural substrates, in AD. Fourteen AD patients were tested on the scene construction task and their performance was contrasted with 14 age- and education-matched healthy older Control participants. Scene construction performance was strikingly compromised in the AD group, with significant impairments evident for provision of contextual details, spatial coherence, and the overall richness of the imagined experience. Voxel-based morphometry analyses based on structural MRI revealed significant associations between scene construction capacity and atrophy in posterior parietal and lateral temporal brain structures in AD. In contrast, scene construction performance in Controls was related to integrity of frontal, parietal, and medial temporal structures, including the parahippocampal gyrus and posterior hippocampus. The posterior cingulate cortex (PCC) emerged as the common region implicated for scene construction performance across participant groups. Our study highlights the importance of regions specialised for spatial and contextual processing for the construction of atemporal scenes. Damage to these regions in AD compromises the ability to construct novel scenes, leading to the recapitulation of content from previously experienced events

    Acyl-Protein Thioesterase 2 Catalizes the Deacylation of Peripheral Membrane-Associated GAP-43

    Get PDF
    An acylation/deacylation cycle is necessary to maintain the steady-state subcellular distribution and biological activity of S-acylated peripheral proteins. Despite the progress that has been made in identifying and characterizing palmitoyltransferases (PATs), much less is known about the thioesterases involved in protein deacylation. In this work, we investigated the deacylation of growth-associated protein-43 (GAP-43), a dually acylated protein at cysteine residues 3 and 4. Using fluorescent fusion constructs, we measured in vivo the rate of deacylation of GAP-43 and its single acylated mutants in Chinese hamster ovary (CHO)-K1 and human HeLa cells. Biochemical and live cell imaging experiments demonstrated that single acylated mutants were completely deacylated with similar kinetic in both cell types. By RT-PCR we observed that acyl-protein thioesterase 1 (APT-1), the only bona fide thioesterase shown to mediate deacylation in vivo, is expressed in HeLa cells, but not in CHO-K1 cells. However, APT-1 overexpression neither increased the deacylation rate of single acylated GAP-43 nor affected the steady-state subcellular distribution of dually acylated GAP-43 both in CHO-K1 and HeLa cells, indicating that GAP-43 deacylation is not mediated by APT-1. Accordingly, we performed a bioinformatic search to identify putative candidates with acyl-protein thioesterase activity. Among several candidates, we found that APT-2 is expressed both in CHO-K1 and HeLa cells and its overexpression increased the deacylation rate of single acylated GAP-43 and affected the steady-state localization of diacylated GAP-43 and H-Ras. Thus, the results demonstrate that APT-2 is the protein thioesterase involved in the acylation/deacylation cycle operating in GAP-43 subcellular distribution

    The HELLP syndrome: Clinical issues and management. A Review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The HELLP syndrome is a serious complication in pregnancy characterized by haemolysis, elevated liver enzymes and low platelet count occurring in 0.5 to 0.9% of all pregnancies and in 10–20% of cases with severe preeclampsia. The present review highlights occurrence, diagnosis, complications, surveillance, corticosteroid treatment, mode of delivery and risk of recurrence.</p> <p>Methods</p> <p>Clinical reports and reviews published between 2000 and 2008 were screened using Pub Med and Cochrane databases.</p> <p>Results and conclusion</p> <p>About 70% of the cases develop before delivery, the majority between the 27th and 37th gestational weeks; the remainder within 48 hours after delivery. The HELLP syndrome may be complete or incomplete. In the Tennessee Classification System diagnostic criteria for HELLP are haemolysis with increased LDH (> 600 U/L), AST (≥ 70 U/L), and platelets < 100·10<sup>9</sup>/L. The Mississippi Triple-class HELLP System further classifies the disorder by the nadir platelet counts. The syndrome is a progressive condition and serious complications are frequent. Conservative treatment (≥ 48 hours) is controversial but may be considered in selected cases < 34 weeks' gestation. Delivery is indicated if the HELLP syndrome occurs after the 34th gestational week or the foetal and/or maternal conditions deteriorate. Vaginal delivery is preferable. If the cervix is unfavourable, it is reasonable to induce cervical ripening and then labour. In gestational ages between 24 and 34 weeks most authors prefer a single course of corticosteroid therapy for foetal lung maturation, either 2 doses of 12 mg betamethasone 24 hours apart or 6 mg or dexamethasone 12 hours apart before delivery. Standard corticosteroid treatment is, however, of uncertain clinical value in the maternal HELLP syndrome. High-dose treatment and repeated doses should be avoided for fear of long-term adverse effects on the foetal brain. Before 34 weeks' gestation, delivery should be performed if the maternal condition worsens or signs of intrauterine foetal distress occur. Blood pressure should be kept below 155/105 mmHg. Close surveillance of the mother should be continued for at least 48 hours after delivery.</p

    Robust imaging of hippocampal inner structure at 7T: in vivo acquisition protocol and methodological choices

    Get PDF
    International audienceOBJECTIVE:Motion-robust multi-slab imaging of hippocampal inner structure in vivo at 7T.MATERIALS AND METHODS:Motion is a crucial issue for ultra-high resolution imaging, such as can be achieved with 7T MRI. An acquisition protocol was designed for imaging hippocampal inner structure at 7T. It relies on a compromise between anatomical details visibility and robustness to motion. In order to reduce acquisition time and motion artifacts, the full slab covering the hippocampus was split into separate slabs with lower acquisition time. A robust registration approach was implemented to combine the acquired slabs within a final 3D-consistent high-resolution slab covering the whole hippocampus. Evaluation was performed on 50 subjects overall, made of three groups of subjects acquired using three acquisition settings; it focused on three issues: visibility of hippocampal inner structure, robustness to motion artifacts and registration procedure performance.RESULTS:Overall, T2-weighted acquisitions with interleaved slabs proved robust. Multi-slab registration yielded high quality datasets in 96 % of the subjects, thus compatible with further analyses of hippocampal inner structure.CONCLUSION:Multi-slab acquisition and registration setting is efficient for reducing acquisition time and consequently motion artifacts for ultra-high resolution imaging of the inner structure of the hippocampus
    • …
    corecore