201 research outputs found

    Spiritan Interreligious Dialogue: The Journey So Far

    Get PDF

    Cortèges et manifestations de la Saint-Nicolas en Moselle au XXe siècle

    Get PDF

    Component Neural Systems for the Creation of Emotional Memories during Free Viewing of a Complex, Real-World Event

    Get PDF
    To investigate the neural systems that contribute to the formation of complex, self-relevant emotional memories, dedicated fans of rival college basketball teams watched a competitive game while undergoing functional magnetic resonance imaging (fMRI). During a subsequent recognition memory task, participants were shown video clips depicting plays of the game, stemming either from previously-viewed game segments (targets) or from non-viewed portions of the same game (foils). After an old–new judgment, participants provided emotional valence and intensity ratings of the clips. A data driven approach was first used to decompose the fMRI signal acquired during free viewing of the game into spatially independent components. Correlations were then calculated between the identified components and post-scanning emotion ratings for successfully encoded targets. Two components were correlated with intensity ratings, including temporal lobe regions implicated in memory and emotional functions, such as the hippocampus and amygdala, as well as a midline fronto-cingulo-parietal network implicated in social cognition and self-relevant processing. These data were supported by a general linear model analysis, which revealed additional valence effects in fronto-striatal-insular regions when plays were divided into positive and negative events according to the fan's perspective. Overall, these findings contribute to our understanding of how emotional factors impact distributed neural systems to successfully encode dynamic, personally-relevant event sequences

    A 2-dimensional Geometry for Biological Time

    Get PDF
    This paper proposes an abstract mathematical frame for describing some features of biological time. The key point is that usual physical (linear) representation of time is insufficient, in our view, for the understanding key phenomena of life, such as rhythms, both physical (circadian, seasonal ...) and properly biological (heart beating, respiration, metabolic ...). In particular, the role of biological rhythms do not seem to have any counterpart in mathematical formalization of physical clocks, which are based on frequencies along the usual (possibly thermodynamical, thus oriented) time. We then suggest a functional representation of biological time by a 2-dimensional manifold as a mathematical frame for accommodating autonomous biological rhythms. The "visual" representation of rhythms so obtained, in particular heart beatings, will provide, by a few examples, hints towards possible applications of our approach to the understanding of interspecific differences or intraspecific pathologies. The 3-dimensional embedding space, needed for purely mathematical reasons, allows to introduce a suitable extra-dimension for "representation time", with a cognitive significance.Comment: Presented in an invited Lecture, conference "Biologie e selezioni naturali", Florence, December 4-8, 200

    Protention and retention in biological systems

    Get PDF
    This paper proposes an abstract mathematical frame for describing some features of cognitive and biological time. We focus here on the so called "extended present" as a result of protentional and retentional activities (memory and anticipation). Memory, as retention, is treated in some physical theories (relaxation phenomena, which will inspire our approach), while protention (or anticipation) seems outside the scope of physics. We then suggest a simple functional representation of biological protention. This allows us to introduce the abstract notion of "biological inertia".Comment: This paper was made possible only as part of an extended collaboration with Francis Bailly (see references), a dear friend and "ma\^itre \'a penser", who contributed to the key ideas. Francis passed away in february 2008: we continue here our inspiring discussions and joint wor
    corecore