57 research outputs found

    Metal artefact reduction for accurate tumour delineation in radiotherapy

    Get PDF
    Background and purpose: Two techniques for metal artefact reduction for computed tomography were studied in order to identify their impact on tumour delineation in radiotherapy. Materials and methods: Using specially designed phantoms containing metal implants (dental, spine and hip) as well as patient images, we investigated the impact of two methods for metal artefact reduction on (A) the size and severity of metal artefacts and the accuracy of Hounsfield Unit (HU) representation, (B) the visual impact of metal artefacts on image quality and (C) delineation accuracy. A metal artefact reduction algorithm (MAR) and two types of dual energy virtual monochromatic (DECT VM) reconstructions were used separately and in combination to identify the optimal technique for each implant site. Results: The artefact area and severity was reduced (by 48–76% and 58–79%, MAR and DECT VM respectively) and accurate Hounsfield-value representation was increased by 22–82%. For each energy, the observers preferred MAR over non-MAR reconstructions (p < 0.01 for dental and hip cases, p < 0.05 for the spine case). In addition, DECT VM was preferred for spine implants (p < 0.01). In all cases, techniques that improved target delineation significantly (p < 0.05) were identified. Conclusions: DECT VM and MAR techniques improve delineation accuracy and the optimal of reconstruction technique depends on the type of metal implant

    Second primary cancers after radiation for prostate cancer: a review of data from planning studies

    Get PDF
    A review of planning studies was undertaken to evaluate estimated risks of radiation induced second primary cancers (RISPC) associated with different prostate radiotherapy techniques for localised prostate cancer. A total of 83 publications were identified which employed a variety of methods to estimate RISPC risk. Of these, the 16 planning studies which specifically addressed absolute or relative second cancer risk using dose–response models were selected for inclusion within this review. There are uncertainties and limitations related to all the different methods for estimating RISPC risk. Whether or not dose models include the effects of the primary radiation beam, as well as out-of-field regions, influences estimated risks. Regarding the impact of IMRT compared to 3D-CRT, at equivalent energies, several studies suggest an increase in risk related to increased leakage contributing to out-of-field RISPC risk, although in absolute terms this increase in risk may be very small. IMRT also results in increased low dose normal tissue irradiation, but the extent to which this has been estimated to contribute to RISPC risk is variable, and may also be very small. IMRT is often delivered using 6MV photons while conventional radiotherapy often requires higher energies to achieve adequate tissue penetration, and so comparisons between IMRT and older techniques should not be restricted to equivalent energies. Proton and brachytherapy planning studies suggest very low RISPC risks associated with these techniques. Until there is sufficient clinical evidence regarding RISPC risks associated with modern irradiation techniques, the data produced from planning studies is relevant when considering which patients to irradiate, and which technique to employ

    In Vitro Models for Studying Secondary Plant Metabolite Digestion and Bioaccessibility

    Get PDF
    There is an increased interest in secondary plant metabolites, such as polyphenols and carotenoids, due to their proposed health benefits. Much attention has focused on their bioavailability, a prerequisite for further physiological functions. As human studies are time consuming, costly, and restricted by ethical concerns, in vitro models for investigating the effects of digestion on these compounds have been developed and employed to predict their release from the food matrix, bioaccessibility, and assess changes in their profiles prior to absorption. Most typically, models simulate digestion in the oral cavity, the stomach, the small intestine, and, occasionally, the large intestine. A plethora of models have been reported, the choice mostly driven by the type of phytochemical studied, whether the purpose is screening or studying under close physiological conditions, and the availability of the model systems. Unfortunately, the diversity of model conditions has hampered the ability to compare results across different studies. For example, there is substantial variability in the time of digestion, concentrations of salts, enzymes, and bile acids used, pH, the inclusion of various digestion stages; and whether chosen conditions are static (with fixed concentrations of enzymes, bile salts, digesta, and so on) or dynamic (varying concentrations of these constituents). This review presents an overview of models that have been employed to study the digestion of both lipophilic and hydrophilic phytochemicals, comparing digestive conditions in vitro and in vivo and, finally, suggests a set of parameters for static models that resemble physiological conditions

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Life years lost attributable to late effects after radiotherapy for early stage Hodgkin lymphoma: the impact of proton therapy and/or deep inspiration breath hold

    No full text
    Background and Purpose: Due to the long life expectancy after treatment, the risk of late effects after radiotherapy (RT) are of particular importance for patients with Hodgkin lymphoma (HL). Both deep inspiration breath hold (DIBH) and proton therapy have been shown to reduce the dose to normal tissues for mediastinal HL, but the impact of these techniques in combination is unknown. The purpose of this study was to compare the life years lost (LYL) attributable to late effects after RT for mediastinal HL using intensity modulated radiation therapy (IMRT) in free breathing (FB) and DIBH, and proton therapy in FB and DIBH. Materials and Methods: Plans for each technique were created for 22 patients with HL. Doses were extracted and the risk of late effects and LYL were estimated. Results: We found that the use of DIBH, proton therapy, and the combination significantly reduced the LYL compared to IMRT in FB. The lowest LYL was found for proton therapy in DIBH. However, when IMRT in DIBH was compared to proton therapy in FB, no significant difference was found. Conclusions: Patient-specific plan comparisons should be used to select the optimal technique when comparing IMRT in DIBH and proton therapy in FB

    Pharmacoeconomic analysis of voriconazole vs. caspofungin in the empirical antifungal therapy of febrile neutropenia in Australia

    No full text
    In two major clinical trials, voriconazole and caspofungin were recommended as alternatives to liposomal amphotericin B for empirical use in febrile neutropenia. This study investigated the health economic impact of using voriconazole vs. caspofungin in patients with febrile neutropenia. A decision analytic model was developed to measure downstream consequences of empirical antifungal therapy. Clinical outcomes measured were success, breakthrough infection, persistent base-line infection, persistent fever, premature discontinuation and death. Treatment transition probabilities and patterns were directly derived from data in two relevant randomised controlled trials. Resource use was estimated using an expert clinical panel. Cost inputs were obtained from latest Australian sources. The analysis adopted the perspective of the Australian hospital system. The use of caspofungin led to a lower expected mean cost per patient than voriconazole (AU40 558vs.AU40 558 vs. AU41 356), with a net cost saving of AU$798 (1.9%) per patient. Results were most sensitive to the duration of therapy and the alternative therapy used post-discontinuation. In uncertainty analysis, the cost associated with caspofungin is less than that with voriconazole in 65.5% of cases. This is the first economic evaluation of voriconazole vs. caspofungin for empirical therapy. Caspofungin appears to have a higher probability of having cost-savings than voriconazole for empirical therapy. The difference between the two medications does not seem to be statistically significant however

    TEDDI: Radiotherapy delivery in deep inspiration for pediatric patients - A NOPHO feasibility study

    No full text
    Background Radiotherapy (RT) delivered in deep inspiration breath-hold (DIBH) is a simple technique, in which changes in patient anatomy can significantly reduce the irradiation of the organs at risk (OARs) surrounding the treatment target. DIBH is routinely used in the treatment of some adult patients to diminish the risk of late effects; however, no formalized studies have addressed the potential benefit of DIBH in children. Methods/Design TEDDI is a multicenter, non-randomized, feasibility study. The study investigates the dosimetric benefit of RT delivered in DIBH compared to free breathing (FB) in pediatric patients. Also, the study aims to establish the compliance to DIBH and to determine the accuracy and reproducibility in a pediatric setting. Pediatric patients (aged 5–17 years) with a tumor in the mediastinum or upper abdomen with the possible need of RT will be included in the study. Written informed consent is obligatory. Prior to any treatment, patients will undergo a DIBH training session followed by a diagnostic PET/CT- or CT-staging scan in both DIBH and FB. If the patient proceeds to RT, a RT planning CT scan will be performed in both DIBH and FB and two separate treatment plans will be calculated. The superior treatment plan, i.e. equal target coverage and lowest overall dose to the OARs, will be chosen for treatment. Patient comfort will be assessed daily by questionnaires and by adherence to the respiratory management procedure. Discussion RT in DIBH is expected to diminish irradiation of the OARs surrounding the treatment target and thereby reduce the risk of late effects in childhood cancer survivors.</p
    corecore