863 research outputs found

    Natural locomotion based on a reduced set of inertial sensors: decoupling body and head directions indoors

    Get PDF
    Inertial sensors offer the potential for integration into wireless virtual reality systems that allow the users to walk freely through virtual environments. However, owing to drift errors, inertial sensors cannot accurately estimate head and body orientations in the long run, and when walking indoors, this error cannot be corrected by magnetometers, due to the magnetic field distortion created by ferromagnetic materials present in buildings. This paper proposes a technique, called EHBD (Equalization of Head and Body Directions), to address this problem using two head- and shoulder-located magnetometers. Due to their proximity, their distortions are assumed to be similar and the magnetometer measurements are used to detect when the user is looking straight forward. Then, the system corrects the discrepancies between the estimated directions of the head and the shoulder, which are provided by gyroscopes and consequently are affected by drift errors. An experiment is conducted to evaluate the performance of this technique in two tasks (navigation and navigation plus exploration) and using two different locomotion techniques: (1) gaze-directed mode (GD) in which the walking direction is forced to be the same as the head direction, and (2) decoupled direction mode (DD) in which the walking direction can be different from the viewing direction. The obtained results show that both locomotion modes show similar matching of the target path during the navigation task, while DD’s path matches the target path more closely than GD in the navigation plus exploration task. These results validate the EHBD technique especially when allowing different walking and viewing directions in the navigation plus exploration tasks, as expected. While the proposed method does not reach the accuracy of optical tracking (ideal case), it is an acceptable and satisfactory solution for users and is much more compact, portable and economical

    The effect of maternal undernutrition on the rat placental transcriptome: protein restriction up-regulates cholesterol transport

    Get PDF
    Fetal exposure to a maternal low protein diet during rat pregnancy is associated with hypertension, renal dysfunction and metabolic disturbance in adult life. These effects are present when dietary manipulations target only the first half of pregnancy. It was hypothesised that early gestation protein restriction would impact upon placental gene expression and that this may give clues to the mechanism which links maternal diet to later consequences. Pregnant rats were fed control or a low protein diet from conception to day 13 gestation. Placentas were collected and RNA Sequencing performed using the Illumina platform. Protein restriction down-regulated 67 genes and up-regulated 24 genes in the placenta. Ingenuity pathway analysis showed significant enrichment in pathways related to cholesterol and lipoprotein transport and metabolism, including atherosclerosis signalling, clathrin-mediated endocytosis, LXR/RXR and FXR/RXR activation. Genes at the centre of these processes included the apolipoproteins ApoB, ApoA2 and ApoC2, microsomal triglyceride transfer protein (Mttp), the clathrin-endocytosis receptor cubilin, the transcription factor retinol binding protein 4 (Rbp4) and transerythrin (Ttr; a retinol and thyroid hormone transporter). Real-time PCR measurements largely confirmed the findings of RNASeq and indicated that the impact of protein restriction was often striking (cubilin up-regulated 32-fold, apoC2 up-regulated 17.6-fold). The findings show that gene expression in specific pathways is modulated by maternal protein restriction in the day-13 rat placenta. Changes in cholesterol transport may contribute to altered tissue development in the fetus and hence programme risk of disease in later life

    Can Community Structure Track Sea-Level Rise? Stress and Competitive Controls in Tidal Wetlands

    Get PDF
    Climate change impacts, such as accelerated sea-level rise, will affect stress gradients, yet impacts on competition/stress tolerance trade-offs and shifts in distributions are unclear. Ecosystems with strong stress gradients, such as estuaries, allow for space-for-time substitutions of stress factors and can give insight into future climate-related shifts in both resource and nonresource stresses. We tested the stress gradient hypothesis and examined the effect of increased inundation stress and biotic interactions on growth and survival of two congeneric wetland sedges, Schoenoplectus acutus and Schoenoplectus americanus. We simulated sea-level rise across existing marsh elevations and those not currently found to reflect potential future sea-level rise conditions in two tidal wetlands differing in salinity. Plants were grown individually and together at five tidal elevations, the lowest simulating an 80-cm increase in sea level, and harvested to assess differences in biomass after one growing season. Inundation time, salinity, sulfides, and redox potential were measured concurrently. As predicted, increasing inundation reduced biomass of the species commonly found at higher marsh elevations, with little effect on the species found along channel margins. The presence of neighbors reduced total biomass of both species, particularly at the highest elevation; facilitation did not occur at any elevation. Contrary to predictions, we documented the competitive superiority of the stress tolerator under increased inundation, which was not predicted by the stress gradient hypothesis. Multifactor manipulation experiments addressing plant response to accelerated climate change are integral to creating a more realistic, valuable, and needed assessment of potential ecosystem response. Our results point to the important and unpredicted synergies between physical stressors, which are predicted to increase in intensity with climate change, and competitive forces on biomass as stresses increase

    Quantification of atopy, lung function and airway hypersensitivity in adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies in children have shown that concentration of specific serum IgE (sIgE) and size of skin tests to inhalant allergens better predict wheezing and reduced lung function than the information on presence or absence of atopy. However, very few studies in adults have investigated the relationship of quantitative atopy with lung function and airway hyperresponsiveness (AHR).</p> <p>Objective</p> <p>To determine the association between lung function and AHR and quantitative atopy in a large sample of adults from the UK.</p> <p>Methods</p> <p>FEV<sub>1</sub> and FVC (% predicted) were measured using spirometry and airway responsiveness by methacholine challenge (5-breath dosimeter protocol) in 983 subjects (random sample of 800 parents of children enrolled in a population-based birth cohort enriched with 183 patients with physician-diagnosed asthma). Atopic status was assessed by skin prick tests (SPT) and measurement of sIgE (common inhalant allergens). We also measured indoor allergen exposure in subjects' homes.</p> <p>Results</p> <p>Spirometry was completed by 792 subjects and 626 underwent methacholine challenge, with 100 (16.0%) having AHR (dose-response slope>25). Using sIgE as a continuous variable in a multiple linear regression analysis, we found that increasing levels of sIgE to mite, cat and dog were significantly associated with lower FEV<sub>1</sub> (mite p = 0.001, cat p = 0.0001, dog p = 2.95 × 10<sup>-8</sup>). Similar findings were observed when using the size of wheal on skin testing as a continuous variable, with significantly poorer lung function with increasing skin test size (mite p = 8.23 × 10<sup>-8</sup>, cat p = 3.93 × 10<sup>-10</sup>, dog p = 3.03 × 10<sup>-15</sup>, grass p = 2.95 × 10<sup>-9</sup>). The association between quantitative atopy with lung function and AHR remained unchanged when we repeated the analyses amongst subjects defined as sensitised using standard definitions (sIgE>0.35 kUa/l, SPT-3 mm>negative control).</p> <p>Conclusions</p> <p>In the studied population, lung function decreased and AHR increased with increasing sIgE levels or SPT wheal diameter to inhalant allergens, suggesting that atopy may not be a dichotomous outcome influencing lung function and AHR.</p

    A pragmatic cluster randomised trial evaluating three implementation interventions

    Get PDF
    Background Implementation research is concerned with bridging the gap between evidence and practice through the study of methods to promote the uptake of research into routine practice. Good quality evidence has been summarised into guideline recommendations to show that peri-operative fasting times could be considerably shorter than patients currently experience. The objective of this trial was to evaluate the effectiveness of three strategies for the implementation of recommendations about peri-operative fasting. Methods A pragmatic cluster randomised trial underpinned by the PARIHS framework was conducted during 2006 to 2009 with a national sample of UK hospitals using time series with mixed methods process evaluation and cost analysis. Hospitals were randomised to one of three interventions: standard dissemination (SD) of a guideline package, SD plus a web-based resource championed by an opinion leader, and SD plus plan-do-study-act (PDSA). The primary outcome was duration of fluid fast prior to induction of anaesthesia. Secondary outcomes included duration of food fast, patients' experiences, and stakeholders' experiences of implementation, including influences. ANOVA was used to test differences over time and interventions. Results Nineteen acute NHS hospitals participated. Across timepoints, 3,505 duration of fasting observations were recorded. No significant effect of the interventions was observed for either fluid or food fasting times. The effect size was 0.33 for the web-based intervention compared to SD alone for the change in fluid fasting and was 0.12 for PDSA compared to SD alone. The process evaluation showed different types of impact, including changes to practices, policies, and attitudes. A rich picture of the implementation challenges emerged, including inter-professional tensions and a lack of clarity for decision-making authority and responsibility. Conclusions This was a large, complex study and one of the first national randomised controlled trials conducted within acute care in implementation research. The evidence base for fasting practice was accepted by those participating in this study and the messages from it simple; however, implementation and practical challenges influenced the interventions' impact. A set of conditions for implementation emerges from the findings of this study, which are presented as theoretically transferable propositions that have international relevance. Trial registration ISRCTN18046709 - Peri-operative Implementation Study Evaluation (POISE

    Massively Parallel Sequencing Reveals the Complex Structure of an Irradiated Human Chromosome on a Mouse Background in the Tc1 Model of Down Syndrome

    Get PDF
    Down syndrome (DS) is caused by trisomy of chromosome 21 (Hsa21) and presents a complex phenotype that arises from abnormal dosage of genes on this chromosome. However, the individual dosage-sensitive genes underlying each phenotype remain largely unknown. To help dissect genotype – phenotype correlations in this complex syndrome, the first fully transchromosomic mouse model, the Tc1 mouse, which carries a copy of human chromosome 21 was produced in 2005. The Tc1 strain is trisomic for the majority of genes that cause phenotypes associated with DS, and this freely available mouse strain has become used widely to study DS, the effects of gene dosage abnormalities, and the effect on the basic biology of cells when a mouse carries a freely segregating human chromosome. Tc1 mice were created by a process that included irradiation microcell-mediated chromosome transfer of Hsa21 into recipient mouse embryonic stem cells. Here, the combination of next generation sequencing, array-CGH and fluorescence in situ hybridization technologies has enabled us to identify unsuspected rearrangements of Hsa21 in this mouse model; revealing one deletion, six duplications and more than 25 de novo structural rearrangements. Our study is not only essential for informing functional studies of the Tc1 mouse but also (1) presents for the first time a detailed sequence analysis of the effects of gamma radiation on an entire human chromosome, which gives some mechanistic insight into the effects of radiation damage on DNA, and (2) overcomes specific technical difficulties of assaying a human chromosome on a mouse background where highly conserved sequences may confound the analysis. Sequence data generated in this study is deposited in the ENA database, Study Accession number: ERP000439

    Spatial cognitive ability is associated with transitory movement speed but not straightness during the early stages of exploration

    Get PDF
    Memories about the spatial environment, such as the locations of foraging patches, are expected to affect how individuals move around the landscape. However, individuals differ in the ability to remember spatial locations (spatial cognitive ability) and evidence is growing that these inter-individual differences influence a range of fitness proxies. Yet empirical evaluations directly linking inter-individual variation in spatial cognitive ability and the development and structure of movement paths are lacking. We assessed the performance of young pheasants ( Phasianus colchicus ) on a spatial cognition task before releasing them into a novel, rural landscape and tracking their movements. We quantified changes in the straightness and speed of their transitory paths over one month. Birds with better performances on the task initially made slower transitory paths than poor performers but by the end of the month, there was no difference in speed. In general, birds increased the straightness of their path over time, indicating improved efficiency independent of speed, but this was not related to performance on the cognitive task. We suggest that initial slow movements may facilitate more detailed information gathering by better performers and indicates a potential link between an individual's spatial cognitive ability and their movement behaviour. </jats:p

    Kinetics of echinostoma caproni (trematoda: echinostomatidae) antigens in feces and serum of experimentally infected hamsters and rats

    Get PDF
    This study reports on the kinetics of antibody production to Echinostoma caproni and the dynamics of antigens in feces and sera in 2 experimental hosts (hamsters and rats) that display different degrees of susceptibility with this echinostome. Echinostoma caproni produced chronic infections in hamsters, whereas rats lost the infection at 49–56 days postinfection (DPI). Hamsters developed higher antibody responses than rats, probably in relation to different intestinal absorptions of worm antigens in each host species. The levels of coproantigens were indicative of the course of infection in each host. Positive coproantigen levels were detected at 1–2 DPI in both hosts, and the values remained positive until the end of the experiment in hamsters; in rats, the coproantigen levels reverted to negative values, coinciding with the loss of infection. High levels of circulating antigens were detected in hamsters from 21 DPI to the end of the study. In contrast, low levels of E. caproni seroantigens were detected in rats only. These observations may reflect the differences in local inflammatory responses induced by E. caproni in each host species.Toledo Navarro, Rafael, [email protected] ; Espert Fernandez, Ana M., [email protected] ; Marcilla Diaz, Antonio, [email protected] ; Esteban Sanchis, Jose Guillermo, [email protected]
    corecore