90 research outputs found

    Characteristics of relativistic microburst intensity from SAMPEX observations

    Get PDF
    Relativistic electron microbursts are an important electron loss process from the radiation belts into the atmosphere. These precipitation events have been shown to significantly impact the radiation belt fluxes and atmospheric chemistry. In this study we address a lack of knowledge about the relativistic microburst intensity using measurements of 21,746 microbursts from the Solar Anomalous Magnetospheric Particle Explorer (SAMPEX). We find that the relativistic microburst intensity increases as we move inward in L, with a higher proportion of low‐intensity microbursts (2,250 [MeV cm2 sr s]−1) in the 03–11 magnetic local time region increases as geomagnetic activity increases, consistent with changes in the whistler mode chorus wave activity. Comparisons between relativistic microburst properties and trapped fluxes suggest that the microburst intensities are not limited by the trapped flux present alongside the scattering processes. However, microburst activity appears to correspond to the changing trapped flux; more microbursts occur when the trapped fluxes are enhancing, suggesting that microbursts are linked to processes causing the increased trapped fluxes. Finally, modeling of the impact of a published microburst spectra on a flux tube shows that microbursts are capable of depleting <500‐keV electrons within 1 hr and depleting higher‐energy electrons in 1–23 hr

    Volume I. Introduction to DUNE

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE\u27s physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    Deep Underground Neutrino Experiment (DUNE), far detector technical design report, volume III: DUNE far detector technical coordination

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    The DUNE far detector vertical drift technology. Technical design report

    Get PDF
    DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    Evaluation of the effectiveness of air pollution control measures in Hong Kong

    Get PDF
    From 2005 to 2013, volatile organic compounds (VOCs) and other trace gases were continuously measured at a suburban site in Hong Kong. The measurement data showed that the concentrations of most air pollutants decreased during these years. However, ozone (O3) and total non-methane hydrocarbon levels increased with the rate of 0.23 ± 0.03 and 0.34 ± 0.02 ppbv/year, respectively, pointing to the increasing severity of photochemical pollution in Hong Kong. The Hong Kong government has ongoing programs to improve air quality in Hong Kong, including a solvent program implemented during 2007–2011, and a diesel commercial vehicle (DCV) program since 2007. From before to after the solvent program, the sum of toluene, ethylbenzene and xylene isomers decreased continuously with an average rate of −99.1 ± 6.9 pptv/year, whereas the sum of ethene and propene increased by 48.2 ± 2.0 pptv/year from before to during the DCV program. Despite this, source apportionment results showed that VOCs emitted from diesel exhaust decreased at a rate of −304.5 ± 17.7 pptv/year, while solvent related VOCs decreased at a rate of −204.7 ± 39.7 pptv/year. The gasoline and liquefied petroleum gas vehicle emissions elevated by 1086 ± 34 pptv/year, and were responsible for the increases of ethene and propene. Overall, the simulated O3 rate of increase was lowered from 0.39 ± 0.03 to 0.16 ± 0.05 ppbv/year by the solvent and DCV programs, because O3 produced by solvent usage and diesel exhaust related VOCs decreased (p < 0.05) by 0.16 ± 0.01 and 0.05 ± 0.01 ppbv/year between 2005 and 2013, respectively. However, enhanced VOC emissions from gasoline and LPG vehicles accounted for most of the O3 increment (0.09 ± 0.01 out of 0.16 ± 0.05 ppbv/year) in these years. To maintain a zero O3 increment in 2020 relative to 2010, the lowest reduction ratio of VOCs/NOx was ∌1.5 under the NOx reduction of 20–30% which was based on the emission reduction plan for Pearl River Delta region in 2020
    • 

    corecore