68 research outputs found

    New constraints from Haverah Park data on the photon and iron fluxes of UHE cosmic rays

    Get PDF
    Using data from inclined events (60<θ<8060^{\circ}<\theta<80^{\circ}) recorded by the Haverah Park shower detector, we show that above 10^19 eV less than 30% of the primary cosmic rays can be photons or iron nuclei at the 95% confidence level. Above 4 10^19 eV less than 55% of the cosmic rays can be photonic at the same confidence level. These limits place important constraints on some models of the origin of ultra high energy cosmic rays. Details of two new events above 10^20 eV are reported.Comment: Latex, 4 pages, 2 eps figures included. Accepted for publication in Physical Review Letter

    Ultrahigh Energy Cosmic Rays: The state of the art before the Auger Observatory

    Full text link
    In this review we discuss the important progress made in recent years towards understanding the experimental data on cosmic rays with energies \agt 10^{19} eV. We begin with a brief survey of the available data, including a description of the energy spectrum, mass composition, and arrival directions. At this point we also give a short overview of experimental techniques. After that, we introduce the fundamentals of acceleration and propagation in order to discuss the conjectured nearby cosmic ray sources. We then turn to theoretical notions of physics beyond the Standard Model where we consider both exotic primaries and exotic physical laws. Particular attention is given to the role that TeV-scale gravity could play in addressing the origin of the highest energy cosmic rays. In the final part of the review we discuss the potential of future cosmic ray experiments for the discovery of tiny black holes that should be produced in the Earth's atmosphere if TeV-scale gravity is realized in Nature.Comment: Final version. To be published in Int. J. Mod. Phys.

    Measurement of the Cosmic Ray Energy Spectrum and Composition from 10^{17} to 10^{18.3} eV Using a Hybrid Fluorescence Technique

    Get PDF
    We study the spectrum and average mass composition of cosmic rays with primary energies between 10^{17} eV and 10^{18} eV using a hybrid detector consisting of the High Resolution Fly's Eye (HiRes) prototype and the MIA muon array. Measurements have been made of the change in the depth of shower maximum as a function of energy. A complete Monte Carlo simulation of the detector response and comparisons with shower simulations leads to the conclusion that the cosmic ray intensity is changing f rom a heavier to a lighter composition in this energy range. The spectrum is consistent with earlier Fly's Eye measurements and supports the previously found steepening near 4 \times 10^{17} eV .Comment: 39 pages, 15 figures, in revtex4 epsf style, submited to AP

    New hadrons as ultra-high energy cosmic rays

    Get PDF
    Ultra-high energy cosmic ray (UHECR) protons produced by uniformly distributed astrophysical sources contradict the energy spectrum measured by both the AGASA and HiRes experiments, assuming the small scale clustering of UHECR observed by AGASA is caused by point-like sources. In that case, the small number of sources leads to a sharp exponential cutoff at the energy E<10^{20} eV in the UHECR spectrum. New hadrons with mass 1.5-3 GeV can solve this cutoff problem. For the first time we discuss the production of such hadrons in proton collisions with infrared/optical photons in astrophysical sources. This production mechanism, in contrast to proton-proton collisions, requires the acceleration of protons only to energies E<10^{21} eV. The diffuse gamma-ray and neutrino fluxes in this model obey all existing experimental limits. We predict large UHE neutrino fluxes well above the sensitivity of the next generation of high-energy neutrino experiments. As an example we study hadrons containing a light bottom squark. These models can be tested by accelerator experiments, UHECR observatories and neutrino telescopes.Comment: 17 pages, revtex style; v2: shortened, as to appear in PR

    Extensive Air Showers from Ultra High Energy Gluinos

    Get PDF
    We study the proposal that the cosmic ray primaries above the Greisen-Zatsepin-Kuzmin (GZK) cutoff are gluino-containing hadrons (g~\tilde g-hadrons). We describe the interaction of g~\tilde g-hadrons with nucleons in the framework of the Gribov-Regge approach using a modified version of the hadronic interaction model QGSJET for the generations of Extensive Air Showers (EAS). There are two mass windows marginally allowed for gluinos: m_{\tilde g}\lsim 3 GeV and 25\lsim m_{\tilde g}\lsim 35 GeV. Gluino-containing hadrons corresponding to the second window produce EAS very different from the observed ones. Light g~\tilde g-hadrons corresponding to the first gluino window produce EAS similar to those initiated by protons, and only future detectors can marginally distinguish them. We propose a beam-dump accelerator experiment to search for g~\tilde g-hadrons in this mass window. We emphasize the importance of this experiment: it can discover (or exclude) the light gluino and its role as a cosmic ray primary at ultra high energies.Comment: 27 pages latex, 13 eps figure

    Feynman scaling violation on baryon spectra in pp collisions at LHC and cosmic ray energies

    Full text link
    A significant asymmetry in baryon/antibaryon yields in the central region of high energy collisions is observed when the initial state has non-zero baryon charge. This asymmetry is connected with the possibility of baryon charge diffusion in rapidity space. Such a diffusion should decrease the baryon charge in the fragmentation region and translate into the corresponding decrease of the multiplicity of leading baryons. As a result, a new mechanism for Feynman scaling violation in the fragmentation region is obtained. Another numerically more significant reason for the Feynman scaling violation comes from the fact that the average number of cutted Pomerons increases with initial energy. We present the quantitative predictions of the Quark-Gluon String Model (QGSM) for the Feynman scaling violation at LHC energies and at even higher energies that can be important for cosmic ray physics.Comment: 21 pages, 11 figures, and 1 table. arXiv admin note: substantial text overlap with arXiv:1107.1615, arXiv:1007.320

    Observation of the Ankle and Evidence for a High-Energy Break in the Cosmic Ray Spectrum

    Full text link
    We have measured the cosmic ray spectrum at energies above 101710^{17} eV using the two air fluorescence detectors of the High Resolution Fly's Eye experiment operating in monocular mode. We describe the detector, PMT and atmospheric calibrations, and the analysis techniques for the two detectors. We fit the spectrum to models describing galactic and extragalactic sources. Our measured spectrum gives an observation of a feature known as the ``ankle'' near 3×10183\times 10^{18} eV, and strong evidence for a suppression near 6×10196\times 10^{19} eV.Comment: 14 pages, 9 figures. To appear in Physics Letters B. Accepted versio

    Gauss hypergeometric function: reduction, epsilon-expansion for integer/half-integer parameters and Feynman diagrams

    Full text link
    The Gauss hypergeometric functions 2F1 with arbitrary values of parameters are reduced to two functions with fixed values of parameters, which differ from the original ones by integers. It is shown that in the case of integer and/or half-integer values of parameters there are only three types of algebraically independent Gauss hypergeometric functions. The epsilon-expansion of functions of one of this type (type F in our classification) demands the introduction of new functions related to generalizations of elliptic functions. For the five other types of functions the higher-order epsilon-expansion up to functions of weight 4 are constructed. The result of the expansion is expressible in terms of Nielsen polylogarithms only. The reductions and epsilon-expansion of q-loop off-shell propagator diagrams with one massive line and q massless lines and q-loop bubble with two-massive lines and q-1 massless lines are considered. The code (Mathematica/FORM) is available via the www at this URL http://theor.jinr.ru/~kalmykov/hypergeom/hyper.htmlComment: 19 pages, LaTeX, 1-eps figure; v5: The code (Mathematica/FORM) is available via the www http://theor.jinr.ru/~kalmykov/hypergeom/hyper.htm

    The exposure of the hybrid detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The "hybrid" detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic

    Measurement of the Depth of Maximum of Extensive Air Showers above 10^18 eV

    Get PDF
    We describe the measurement of the depth of maximum, Xmax, of the longitudinal development of air showers induced by cosmic rays. Almost four thousand events above 10^18 eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of (106 +35/-21) g/cm^2/decade below 10^(18.24 +/- 0.05) eV and (24 +/- 3) g/cm^2/decade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm^2. The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.Comment: Accepted for publication by PR
    corecore