68 research outputs found
New constraints from Haverah Park data on the photon and iron fluxes of UHE cosmic rays
Using data from inclined events () recorded by
the Haverah Park shower detector, we show that above 10^19 eV less than 30% of
the primary cosmic rays can be photons or iron nuclei at the 95% confidence
level. Above 4 10^19 eV less than 55% of the cosmic rays can be photonic at the
same confidence level. These limits place important constraints on some models
of the origin of ultra high energy cosmic rays. Details of two new events above
10^20 eV are reported.Comment: Latex, 4 pages, 2 eps figures included. Accepted for publication in
Physical Review Letter
Ultrahigh Energy Cosmic Rays: The state of the art before the Auger Observatory
In this review we discuss the important progress made in recent years towards
understanding the experimental data on cosmic rays with energies \agt 10^{19}
eV. We begin with a brief survey of the available data, including a description
of the energy spectrum, mass composition, and arrival directions. At this point
we also give a short overview of experimental techniques. After that, we
introduce the fundamentals of acceleration and propagation in order to discuss
the conjectured nearby cosmic ray sources. We then turn to theoretical notions
of physics beyond the Standard Model where we consider both exotic primaries
and exotic physical laws. Particular attention is given to the role that
TeV-scale gravity could play in addressing the origin of the highest energy
cosmic rays. In the final part of the review we discuss the potential of future
cosmic ray experiments for the discovery of tiny black holes that should be
produced in the Earth's atmosphere if TeV-scale gravity is realized in Nature.Comment: Final version. To be published in Int. J. Mod. Phys.
Measurement of the Cosmic Ray Energy Spectrum and Composition from 10^{17} to 10^{18.3} eV Using a Hybrid Fluorescence Technique
We study the spectrum and average mass composition of cosmic rays with
primary energies between 10^{17} eV and 10^{18} eV using a hybrid detector
consisting of the High Resolution Fly's Eye (HiRes) prototype and the MIA muon
array. Measurements have been made of the change in the depth of shower maximum
as a function of energy. A complete Monte Carlo simulation of the detector
response and comparisons with shower simulations leads to the conclusion that
the cosmic ray intensity is changing f rom a heavier to a lighter composition
in this energy range. The spectrum is consistent with earlier Fly's Eye
measurements and supports the previously found steepening near 4 \times 10^{17}
eV .Comment: 39 pages, 15 figures, in revtex4 epsf style, submited to AP
New hadrons as ultra-high energy cosmic rays
Ultra-high energy cosmic ray (UHECR) protons produced by uniformly
distributed astrophysical sources contradict the energy spectrum measured by
both the AGASA and HiRes experiments, assuming the small scale clustering of
UHECR observed by AGASA is caused by point-like sources. In that case, the
small number of sources leads to a sharp exponential cutoff at the energy
E<10^{20} eV in the UHECR spectrum. New hadrons with mass 1.5-3 GeV can solve
this cutoff problem. For the first time we discuss the production of such
hadrons in proton collisions with infrared/optical photons in astrophysical
sources. This production mechanism, in contrast to proton-proton collisions,
requires the acceleration of protons only to energies E<10^{21} eV. The diffuse
gamma-ray and neutrino fluxes in this model obey all existing experimental
limits. We predict large UHE neutrino fluxes well above the sensitivity of the
next generation of high-energy neutrino experiments. As an example we study
hadrons containing a light bottom squark. These models can be tested by
accelerator experiments, UHECR observatories and neutrino telescopes.Comment: 17 pages, revtex style; v2: shortened, as to appear in PR
Extensive Air Showers from Ultra High Energy Gluinos
We study the proposal that the cosmic ray primaries above the
Greisen-Zatsepin-Kuzmin (GZK) cutoff are gluino-containing hadrons (-hadrons). We describe the interaction of -hadrons with nucleons in
the framework of the Gribov-Regge approach using a modified version of the
hadronic interaction model QGSJET for the generations of Extensive Air Showers
(EAS). There are two mass windows marginally allowed for gluinos: m_{\tilde
g}\lsim 3 GeV and 25\lsim m_{\tilde g}\lsim 35 GeV. Gluino-containing
hadrons corresponding to the second window produce EAS very different from the
observed ones. Light -hadrons corresponding to the first gluino
window produce EAS similar to those initiated by protons, and only future
detectors can marginally distinguish them. We propose a beam-dump accelerator
experiment to search for -hadrons in this mass window. We emphasize
the importance of this experiment: it can discover (or exclude) the light
gluino and its role as a cosmic ray primary at ultra high energies.Comment: 27 pages latex, 13 eps figure
Feynman scaling violation on baryon spectra in pp collisions at LHC and cosmic ray energies
A significant asymmetry in baryon/antibaryon yields in the central region of
high energy collisions is observed when the initial state has non-zero baryon
charge. This asymmetry is connected with the possibility of baryon charge
diffusion in rapidity space. Such a diffusion should decrease the baryon charge
in the fragmentation region and translate into the corresponding decrease of
the multiplicity of leading baryons. As a result, a new mechanism for Feynman
scaling violation in the fragmentation region is obtained. Another numerically
more significant reason for the Feynman scaling violation comes from the fact
that the average number of cutted Pomerons increases with initial energy. We
present the quantitative predictions of the Quark-Gluon String Model (QGSM) for
the Feynman scaling violation at LHC energies and at even higher energies that
can be important for cosmic ray physics.Comment: 21 pages, 11 figures, and 1 table. arXiv admin note: substantial text
overlap with arXiv:1107.1615, arXiv:1007.320
Observation of the Ankle and Evidence for a High-Energy Break in the Cosmic Ray Spectrum
We have measured the cosmic ray spectrum at energies above eV using
the two air fluorescence detectors of the High Resolution Fly's Eye experiment
operating in monocular mode. We describe the detector, PMT and atmospheric
calibrations, and the analysis techniques for the two detectors. We fit the
spectrum to models describing galactic and extragalactic sources. Our measured
spectrum gives an observation of a feature known as the ``ankle'' near eV, and strong evidence for a suppression near eV.Comment: 14 pages, 9 figures. To appear in Physics Letters B. Accepted versio
Gauss hypergeometric function: reduction, epsilon-expansion for integer/half-integer parameters and Feynman diagrams
The Gauss hypergeometric functions 2F1 with arbitrary values of parameters
are reduced to two functions with fixed values of parameters, which differ from
the original ones by integers. It is shown that in the case of integer and/or
half-integer values of parameters there are only three types of algebraically
independent Gauss hypergeometric functions. The epsilon-expansion of functions
of one of this type (type F in our classification) demands the introduction of
new functions related to generalizations of elliptic functions. For the five
other types of functions the higher-order epsilon-expansion up to functions of
weight 4 are constructed. The result of the expansion is expressible in terms
of Nielsen polylogarithms only. The reductions and epsilon-expansion of q-loop
off-shell propagator diagrams with one massive line and q massless lines and
q-loop bubble with two-massive lines and q-1 massless lines are considered. The
code (Mathematica/FORM) is available via the www at this URL
http://theor.jinr.ru/~kalmykov/hypergeom/hyper.htmlComment: 19 pages, LaTeX, 1-eps figure; v5: The code (Mathematica/FORM) is
available via the www http://theor.jinr.ru/~kalmykov/hypergeom/hyper.htm
The exposure of the hybrid detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays.
It consists of a surface array to measure secondary particles at ground level
and a fluorescence detector to measure the development of air showers in the
atmosphere above the array. The "hybrid" detection mode combines the
information from the two subsystems. We describe the determination of the
hybrid exposure for events observed by the fluorescence telescopes in
coincidence with at least one water-Cherenkov detector of the surface array. A
detailed knowledge of the time dependence of the detection operations is
crucial for an accurate evaluation of the exposure. We discuss the relevance of
monitoring data collected during operations, such as the status of the
fluorescence detector, background light and atmospheric conditions, that are
used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic
Measurement of the Depth of Maximum of Extensive Air Showers above 10^18 eV
We describe the measurement of the depth of maximum, Xmax, of the
longitudinal development of air showers induced by cosmic rays. Almost four
thousand events above 10^18 eV observed by the fluorescence detector of the
Pierre Auger Observatory in coincidence with at least one surface detector
station are selected for the analysis. The average shower maximum was found to
evolve with energy at a rate of (106 +35/-21) g/cm^2/decade below 10^(18.24 +/-
0.05) eV and (24 +/- 3) g/cm^2/decade above this energy. The measured
shower-to-shower fluctuations decrease from about 55 to 26 g/cm^2. The
interpretation of these results in terms of the cosmic ray mass composition is
briefly discussed.Comment: Accepted for publication by PR
- …