51 research outputs found

    Microscopic study of collective states of even-even Molybdenum isotopes

    Full text link
    Low energy quadrupole excitations of the 84-110Mo nuclei are studied in the frame of the general Bohr collective model based on the ATDHFB method with the Skyrme effective interaction. Obtained energies of the 2_1, 4_1, 2_2 and 0_2 levels and B(E2) values for the 2_1 -> 0_g.s transitions are in good agreement with experimental data.Comment: 8 pages, 9 figures, presented at 16th Nuclear Physics Workshop, Sept. 2009, Kazimierz Dolny, Polan

    Collective excitations of transactinide nuclei in a self-consistent mean field theory

    Full text link
    The ATDHFB approach has been applied for a study of properties of collective quadrupole states in several transactinide nuclei: 238U, 240Pu, 242Pu, 246Cm, 248Cm, 250Cf and 252Cf. Calculated energies and B(E2) transition probabilities are in a reasonable agreement with experimental data. Results concerning superdeformed collective states in the 240Pu nucleus are also presented.Comment: 8 pages, 7 figures; presented at 14th Nuclear Physics Workshop (Kazimierz Dolny, Poland, Sept. 2007

    The low-lying quadrupole collective excitations of Ru and Pd isotopes

    Get PDF
    Quadrupole excitations of even-even Ru and Pd isotopes are described within microscopic approach based on the general collective Bohr model which includes the effect of coupling with the pairing vibrations. The excitation energies and E2 transition probabilities observed in 104-114Ru and 106-110Pd are reproduced in the frame of the calculation containing no free parameters.Comment: 11 pages, 18 figures in EPS forma

    Collective quadrupole excitations in the 50<Z,N<82 nuclei with the generalized Bohr Hamiltonian

    Full text link
    The generalized Bohr Hamiltonian is applied to a description of low-lying collective excitations in even-even isotopes of Te, Xe, Ba, Ce, Nd and Sm. The collective potential and inertial functions are determined by means of the Strutinsky method and the cranking model, respectively. A shell-dependent parametrization of the Nilsson potential is used. An approximate particle-number projection is performed in treatment of pairing correlations. The effect of coupling with the pairing vibrations is taken into account approximately when determining the inertial functions. The calculation does not contain any free parameter.Comment: Latex2e source, 20 pages, 14 figures in EPS format, tar gzipped fil

    Superdeformed and Triaxial States in Ca 42

    Get PDF
    Shape parameters of a weakly deformed ground-state band and highly deformed slightly triaxial sideband in ^{42}Ca were determined from E2 matrix elements measured in the first low-energy Coulomb excitation experiment performed with AGATA. The picture of two coexisting structures is well reproduced by new state-of-the-art large-scale shell model and beyond-mean-field calculations. Experimental evidence for superdeformation of the band built on 0_{2}^{+} has been obtained and the role of triaxiality in the A∼40 mass region is discussed. Furthermore, the potential of Coulomb excitation as a tool to study superdeformation has been demonstrated for the first time

    Quadrupole collectivity in Ca 42 from low-energy Coulomb excitation with AGATA

    Get PDF
    A Coulomb-excitation experiment to study electromagnetic properties of Ca42 was performed using a 170-MeV calcium beam from the TANDEM XPU facility at INFN Laboratori Nazionali di Legnaro. γ rays from excited states in Ca42 were measured with the AGATA spectrometer. The magnitudes and relative signs of ten E2 matrix elements coupling six low-lying states in Ca42, including the diagonal E2 matrix elements of 21+ and 22+ states, were determined using the least-squares code gosia. The obtained set of reduced E2 matrix elements was analyzed using the quadrupole sum rule method and yielded overall quadrupole deformation for 01,2+ and 21,2+ states, as well as triaxiality for 01,2+ states, establishing the coexistence of a weakly deformed ground-state band and highly deformed slightly triaxial sideband in Ca42. The experimental results were compared with the state-of-the-art large-scale shell-model and beyond-mean-field calculations, which reproduce well the general picture of shape coexistence in Ca42

    Reducing the development gaps between regions in Poland with the use of European Union funds

    Get PDF
    The paper evaluates the processes of regional income convergence in Poland. This new research approach involves an attempt to assess the process of convergence from the point of view of development gaps. Six key development gaps were considered in the region of Eastern Poland, which is a singular case, significantly different from other regions. A dynamic panel data model was applied to investigate the impact of EU funds on the progress made towards closing these development gaps. Among the analysed development gaps, only the structural gap was not reduced in the period 2004–2015. Studies have also revealed the different impact of structural funds on each category of development gaps (a positive impact on reducing the regional transport accessibility gap and the investment gap, but negative – on reducing the innovation gap). Research has suggested the need for a change in the structure of using EU funds in the period 2014–2020 to favour stronger support for entrepreneurship and the creation of new jobs. Greater stimulation of the economic structure of peripheral regions has been proposed as the prerequisite for the future reduction in the discrepancies between regions and for the intensification of convergence. First published online 2 April 201

    Simultaneous γ-ray and electron spectroscopy of 182,184,186Hg isotopes

    Get PDF
    Background: The mercury isotopes around N=104 are a well-known example of nuclei exhibiting shape coexistence. Mixing of configurations can be studied by measuring the monopole strength ρ2(E0), however, currently the experimental information is scarce and lacks precision, especially for the Iπ→Iπ (I≠0) transitions. Purpose: The goals of this study were to increase the precision of the known branching ratios and internal conversion coefficients, to increase the amount of available information regarding excited states in Hg182,184,186, and to interpret the results in the framework of shape coexistence using different models. Method: The low-energy structures in Hg182,184,186 were populated in the β decay of Tl182,184,186, produced at ISOLDE, CERN and purified by laser ionization and mass separation. The γ-ray and internal conversion electron events were detected by five germanium clover detectors and a segmented silicon detector, respectively, and correlated in time to build decay schemes. Results: In total, 193, 178, and 156 transitions, including 144, 140, and 108 observed for the first time in a β-decay experiment, were assigned to Hg182,184,186, respectively. Internal conversion coefficients were determined for 23 transitions, out of which 12 had an E0 component. Extracted branching ratios allowed the sign of the interference term in Hg182 as well as ρ2(E0;02+→01+) and B(E2;02+→21+) in Hg184 to be determined. By means of electron-electron coincidences, the 03+ state was identified in Hg184. The experimental results were qualitatively reproduced by five theoretical approaches, the interacting boson model with configuration mixing with two different parametrizations, the general Bohr Hamiltonian, the beyond mean-field model, and the symmetry-conserving configuration-mixing model. However, a quantitative description is lacking. Conclusions: The presence of shape coexistence in neutron-deficient mercury isotopes was confirmed and evidence for the phenomenon existing at higher energies was found. The new experimental results provide important spectroscopic input for future Coulomb excitation studies
    corecore