433 research outputs found

    Constraining Bilinear R-Parity Violation from Neutrino Masses

    Full text link
    We confront the R-parity violating MSSM model with the neutrino oscillation data. Investigating the 1-loop particle-sparticle diagrams with additional bilinear insertions on the external neutrino lines we construct the relevant contributions to the neutrino mass matrix. A comparison of the so-obtained matrices with the experimental ones assuming normal or inverted hierarchy and taking into account possible CP violating phases, allows to set constraints on the values of the bilinear coupling constants. A similar calculation is presented with the input from the Heidelberg-Moscow neutrinoless double beta decay experiment. We base our analysis on the renormalization group evolution of the MSSM parameters which are unified at the GUT scale. Using the obtained bounds we calculate the contributions to the Majorana neutrino transition magnetic moments.Comment: I've decided to move the collection of my papers to arXiv for easier acces

    Critical point calculation for binary mixtures of symmetric non-additive hard disks

    Full text link
    We have calculated the values of critical packing fractions for the mixtures of symmetric non-additive hard disks. An interesting feature of the model is the fact that the internal energy is zero and the phase transitions are entropically driven. A cluster algorithm for Monte Carlo simulations in a semigrand ensemble was used. The finite size scaling analysis was employed to compute the critical packing fractions for infinite systems with high accuracy for a range of non-additivity parameters wider than in the previous studies.Comment: 8 pages, 4 figure

    Tabulating families of functions with symmetries

    Get PDF
    We propose a general algorithm which aims at optimizing the usage of computer resources fortabulating families of functions possessing known symmetries. The approach is based on the grouptheoretical description of symmetry relations among the functions and their parameters, whereorbits play a crucial role

    Extra Dimensions and Neutrinoless Double Beta Decay Experiments

    Full text link
    The neutrinoless double beta decay is one of the few phenomena, belonging to the non-standard physics, which is extensively being sought for in experiments. In the present paper the link between the half-life of the neutrinoless double beta decay and theories with large extra dimensions is explored. The use of the sensitivities of currently planned 0ν2β0\nu2\beta experiments: DAMA, CANDLES, COBRA, DCBA, CAMEO, GENIUS, GEM, MAJORANA, MOON, CUORE, EXO, and XMASS, gives the possibility for a non-direct `experimental' verification of various extra dimensional scenarios. We discuss also the results of the Heidelberg--Moscow Collaboration. The calculations are based on the Majorana neutrino mass generation mechanism in the Arkani-Hamed--Dimopoulos--Dvali model.Comment: I've decided to move the collection of my papers to arXiv for easier acces

    0ν2β0\nu2\beta Nuclear Matrix Elements and Neutrino Magnetic Moments

    Full text link
    We compare different methods of obtaining the neutrinoless double beta decay nuclear matrix elements (NME). On the example of 76Ge we use the NME to calculate the Majorana neutrino transition magnetic moments, generated through particle-sparticle R-parity violating loop diagrams whithin the minimal supersymmetric standard model.Comment: I've decided to move the collection of my papers to arXiv for easier access. Proceedings of the Nuclear Physics Workshop in Kazimierz Dolny, Poland, 200
    corecore