49 research outputs found

    Terrestrial production vs. extraterrestrial delivery of prebiotic organics to the early Earth

    Get PDF
    A comprehensive treatment of comet/asteroid interaction with the atmosphere, ensuring surface impact, and resulting organic pyrolysis is required to determine whether more than a negligible fraction of the organics in incident comets and asteroids actually survived collision with Earth. Results of such an investigation, using a smoothed particle hydrodynamic simulation of cometary and asteroidal impacts into both oceans and rock, demonstrate that organics will not survive impacts at velocities approx. greater than 10 km s(exp -1), and that even comets and asteroids as small as 100m in radius cannot be aerobraked to below this velocity in 1 bar atmospheres. However, for plausible dense (10 bar CO2) early atmospheres, there will be sufficient aerobraking during atmospheric passage for some organics to survive the ensuing impact. Combining these results with analytical fits to the lunar impact record shows that 4.5 Gyr ago Earth was accreting at least approx. 10(exp 6) kg yr(exp 1) of intact cometary organics, a flux which thereafter declined with a approx. 100 Myr half-life. The extent to which this influx was augmented by asteroid impacts, as well as the effect of more careful modelling of a variety of conservative approximations, is currently being quantified. These results may be placed in context by comparison with in situ organic production from a variety of terrestrial energy sources, as well as organic delivery by interplanetary dust. Which source dominated the early terrestrial prebiotic inventory is found to depend on the nature of the early terrestrial atmosphere. However, there is an intriguing symmetry: it is exactly those dense CO2 atmospheres where in situ atmospheric production of organic molecules should be the most difficult, in which intact cometary organics would be delivered in large amounts

    Winds of Planet Hosting Stars

    Get PDF
    The field of exoplanetary science is one of the most rapidly growing areas of astrophysical research. As more planets are discovered around other stars, new techniques have been developed that have allowed astronomers to begin to characterise them. Two of the most important factors in understanding the evolution of these planets, and potentially determining whether they are habitable, are the behaviour of the winds of the host star and the way in which they interact with the planet. The purpose of this project is to reconstruct the magnetic fields of planet hosting stars from spectropolarimetric observations, and to use these magnetic field maps to inform simulations of the stellar winds in those systems using the Block Adaptive Tree Solar-wind Roe Upwind Scheme (BATS-R-US) code. The BATS-R-US code was originally written to investigate the behaviour of the Solar wind, and so has been altered to be used in the context of other stellar systems. These simulations will give information about the velocity, pressure and density of the wind outward from the host star. They will also allow us to determine what influence the winds will have on the space weather environment of the planet. This paper presents the preliminary results of these simulations for the star τ\tau Bo\"otis, using a newly reconstructed magnetic field map based on previously published observations. These simulations show interesting structures in the wind velocity around the star, consistent with the complex topology of its magnetic field.Comment: 8 pages, 2 figures, accepted for publication in the peer-reviewed proceedings of the 14th Australian Space Research Conference, held at the University of South Australia, 29th September - 1st October 201

    A national-scale seasonal hydrological forecast system: development and evaluation over Britain

    Get PDF
    Skilful winter seasonal predictions for the North Atlantic circulation and northern Europe have now been demonstrated and the potential for seasonal hydrological forecasting in the UK is now being explored. One of the techniques being used combines seasonal rainfall forecasts provided by operational weather forecast systems with hydrological modelling tools to provide estimates of seasonal mean river flows up to a few months ahead. The work presented here shows how spatial information contained in a distributed hydrological model typically requiring high-resolution (daily or better) rainfall data can be used to provide an initial condition for a much simpler forecast model tailored to use low-resolution monthly rainfall forecasts. Rainfall forecasts (“hindcasts”) from the GloSea5 model (1996 to 2009) are used to provide the first assessment of skill in these national-scale flow forecasts. The skill in the combined modelling system is assessed for different seasons and regions of Britain, and compared to what might be achieved using other approaches such as use of an ensemble of historical rainfall in a hydrological model, or a simple flow persistence forecast. The analysis indicates that only limited forecast skill is achievable for Spring and Summer seasonal hydrological forecasts; however, Autumn and Winter flows can be reasonably well forecast using (ensemble mean) rainfall forecasts based on either GloSea5 forecasts or historical rainfall (the preferred type of forecast depends on the region). Flow forecasts using ensemble mean GloSea5 rainfall perform most consistently well across Britain, and provide the most skilful forecasts overall at the 3-month lead time. Much of the skill (64 %) in the 1-month ahead seasonal flow forecasts can be attributed to the hydrological initial condition (particularly in regions with a significant groundwater contribution to flows), whereas for the 3-month ahead lead time, GloSea5 forecasts account for  ∼ 70 % of the forecast skill (mostly in areas of high rainfall to the north and west) and only 30 % of the skill arises from hydrological memory (typically groundwater-dominated areas). Given the high spatial heterogeneity in typical patterns of UK rainfall and evaporation, future development of skilful spatially distributed seasonal forecasts could lead to substantial improvements in seasonal flow forecast capability, potentially benefitting practitioners interested in predicting hydrological extremes, not only in the UK but also across Europe

    The winds of young Solar-type stars in the Hyades

    Get PDF
    Stellar winds govern the spin-down of Solar-type stars as they age, and play an important role in determining planetary habitability, as powerful winds can lead to atmospheric erosion. We calculate 3D stellar wind models for five young Solar-type stars in the Hyades cluster, using TOUPIES survey stellar magnetograms and state-of-the-art Alfvén wave-driven wind modelling. The stars have the same 0.6 Gyr age and similar fundamental parameters, and we account for the uncertainty in and underestimation of absolute field strength inherent in Zeeman-Doppler imaging by adopting both unscaled and scaled (by a factor of five) field strengths. For the unscaled fields, the resulting stellar wind mass-loss is 2-4 times greater and the angular momentum loss 2-10 times greater than for the Sun today, with the scaled results correspondingly greater. We compare our results with a range published of wind models and for the Alfvén wave-driven modelling see evidence of mass-loss saturation at 10M˙{\sim 10} \dot{M}_{\odot }

    SPHRAY: A Smoothed Particle Hydrodynamics Ray Tracer for Radiative Transfer

    Full text link
    We introduce SPHRAY, a Smoothed Particle Hydrodynamics (SPH) ray tracer designed to solve the 3D, time dependent, radiative transfer (RT) equations for arbitrary density fields. The SPH nature of SPHRAY makes the incorporation of separate hydrodynamics and gravity solvers very natural. SPHRAY relies on a Monte Carlo (MC) ray tracing scheme that does not interpolate the SPH particles onto a grid but instead integrates directly through the SPH kernels. Given initial conditions and a description of the sources of ionizing radiation, the code will calculate the non-equilibrium ionization state (HI, HII, HeI, HeII, HeIII, e) and temperature (internal energy/entropy) of each SPH particle. The sources of radiation can include point like objects, diffuse recombination radiation, and a background field from outside the computational volume. The MC ray tracing implementation allows for the quick introduction of new physics and is parallelization friendly. A quick Axis Aligned Bounding Box (AABB) test taken from computer graphics applications allows for the acceleration of the raytracing component. We present the algorithms used in SPHRAY and verify the code by performing all the test problems detailed in the recent Radiative Transfer Comparison Project of Iliev et. al. The Fortran 90 source code for SPHRAY and example SPH density fields are made available on a companion website (www.sphray.org).Comment: 17 pages, 16 figures, submitted to MNRAS, comments welcome. source code, high res. figures and examples can be found at http://www.sphray.or

    The winds of young Solar-type stars in Coma Berenices and Hercules-Lyra

    Get PDF
    We present wind models of 10 young Solar-type stars in the Hercules-Lyra association and the Coma Berenices cluster aged around ∼0.26 and ∼0.58 Gyr, respectively. Combined with five previously modelled stars in the Hyades cluster, aged ∼0.63 Gyr, we obtain a large atlas of 15 observationally based wind models. We find varied geometries, multi-armed structures in the equatorial plane, and a greater spread in quantities such as the angular momentum loss. In our models, we infer variation of a factor of ∼6 in wind angular momentum loss J˙ and a factor of ∼2 in wind mass-loss M˙ based on magnetic field geometry differences when adjusting for the unsigned surface magnetic flux. We observe a large variation factor of ∼4 in wind pressure for an Earth-like planet; we attribute this to variations in the ‘magnetic inclination’ of the magnetic dipole axis with respect to the stellar axis of rotation. Within our models, we observe a tight correlation between unsigned open magnetic flux and angular momentum loss. To account for possible underreporting of the observed magnetic field strength we investigate a second series of wind models where the magnetic field has been scaled by a factor of 5. This gives M˙∝B0.4 and J˙∝B1.0 as a result of pure magnetic scaling

    EvoL: The new Padova T-SPH parallel code for cosmological simulations - I. Basic code: gravity and hydrodynamics

    Full text link
    We present EvoL, the new release of the Padova N-body code for cosmological simulations of galaxy formation and evolution. In this paper, the basic Tree + SPH code is presented and analysed, together with an overview on the software architectures. EvoL is a flexible parallel Fortran95 code, specifically designed for simulations of cosmological structure formation on cluster, galactic and sub-galactic scales. EvoL is a fully Lagrangian self-adaptive code, based on the classical Oct-tree and on the Smoothed Particle Hydrodynamics algorithm. It includes special features such as adaptive softening lengths with correcting extra-terms, and modern formulations of SPH and artificial viscosity. It is designed to be run in parallel on multiple CPUs to optimize the performance and save computational time. We describe the code in detail, and present the results of a number of standard hydrodynamical tests.Comment: 33 pages, 49 figures, accepted on A&

    The interplay between chemical and mechanical feedback from the first generation of stars

    Full text link
    We study cosmological simulations of early structure formation, including non-equilibrium molecular chemistry, metal pollution from stellar evolution, transition from population III (popIII) to population II (popII) star formation, regulated by a given critical metallicity, and feedback effects. We investigate the properties of early metal spreading from the different stellar populations and its interplay with primordial molecular gas. We find that, independently of the details about popIII modeling, after the onset of star formation, regions enriched below the critical level are mostly found in isolated environments, while popII star formation regions are much more clumped. Typical star forming haloes show average SN driven outflow rates of up to 10^{-4} Msun/yr in enriched gas, initially leaving the original star formation regions almost devoid of metals. The polluted material, which is gravitationally incorporated in over-dense environments on timescales of 10^7 yr, is mostly coming from external, nearby star forming sites ("gravitational enrichment"). In parallel, the pristine-gas inflow rates are between 10^{-3} - 10^{-1} Msun/yr. However, thermal feedback from SN generates turbulence and destroys molecules within the pristine gas, and only the polluted material, incorporated via gravitational enrichment, can continue to cool by atomic metal fine-structure transitions on time scales short enough to end the initial popIII regime within less than 10^8 yr.Comment: Accepted on the 31/1/201

    Skillful long-range prediction of European and North American winters

    Get PDF
    This is the final version. Available from AGU via the DOI in this recordUntil recently, long-range forecast systems showed only modest levels of skill in predicting surface winter climate around the Atlantic Basin and associated fluctuations in the North Atlantic Oscillation at seasonal lead times. Here we use a new forecast system to assess seasonal predictability of winter North Atlantic climate. We demonstrate that key aspects of European and North American winter climate and the surface North Atlantic Oscillation are highly predictable months ahead. We demonstrate high levels of prediction skill in retrospective forecasts of the surface North Atlantic Oscillation, winter storminess, near-surface temperature, and wind speed, all of which have high value for planning and adaptation to extreme winter conditions. Analysis of forecast ensembles suggests that while useful levels of seasonal forecast skill have now been achieved, key sources of predictability are still only partially represented and there is further untapped predictability. Key Points The winter NAO can be skilfully predicted months ahead The signal-to-noise ratio of the predictable signal is anomalously low Predictions of the risk of regional winter extremes are possibleThis work was supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101), the UK Public Weather Service research program, and the European Union Framework 7 SPECS project. Leon Hermanson was funded as part of his Research Fellowship by Willis as part of Willis Research Network (WRN)
    corecore