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Abstract Until recently, long-range forecast systems showed only modest levels of skill in predicting
surface winter climate around the Atlantic Basin and associated fluctuations in the North Atlantic
Oscillation at seasonal lead times. Here we use a new forecast system to assess seasonal predictability of
winter North Atlantic climate. We demonstrate that key aspects of European and North American winter
climate and the surface North Atlantic Oscillation are highly predictable months ahead. We demonstrate
high levels of prediction skill in retrospective forecasts of the surface North Atlantic Oscillation, winter
storminess, near-surface temperature, and wind speed, all of which have high value for planning and
adaptation to extreme winter conditions. Analysis of forecast ensembles suggests that while useful levels
of seasonal forecast skill have now been achieved, key sources of predictability are still only partially
represented and there is further untapped predictability.

1. Introduction

Despite recent advances in weather and climate forecasting, skillful predictions of year to year fluctuations in
winter North Atlantic Oscillation [Walker and Bliss, 1932] and associated changes in weather at lead times of
months have until recently been elusive [Johansson, 2007; Kim et al., 2012; Smith et al., 2012]. This is because
climate models have shown little extratropical atmospheric circulation response to slowly varying
components of the climate system such as the ocean [Kushnir et al., 2006], which might otherwise provide
long-range predictability. As a result, while many state-of-the-art seasonal forecast systems show significant
predictability for tropical climate, only low forecast skill is generally found in the extratropics [Arribas et al.,
2011; Kim et al., 2012]. This has led to the conclusion that little predictability may exist for key extratropical
events such as extreme winters [Jung et al., 2011]. However, climate models are imperfect and predictability
could well be underrepresented. Indeed, past forecast systems have occasionally shown signs of skill in
extratropical circulation [Palmer et al., 2004; Müller et al., 2005], and encouraging levels of skill for the Arctic
Oscillation were recently reported by Riddle et al. [2013]. An improvement in long-range forecasting of the
extratropics would generate enormous benefit to society as it would allow planning in highly populated
regions of the Northern Hemisphere for the risk of severe winter weather including winter wind storms
[Renggli et al., 2011] and disruption to transport [Palin et al., 2013] networks for example.

The single most important factor for year to year fluctuations in the seasonal climate around the Atlantic Basin
is the state of the North Atlantic Oscillation (NAO) and its hemispheric equivalent, the Arctic Oscillation. Year to
year variability in the NAO describes the state of the Atlantic jet stream and is directly related to near-surface
winds and hence winter temperatures (through advection) across North America, Europe, and other regions
around the Atlantic Basin. We present estimates of the predictability of the surface NAO and winter climate
from the Met Office seasonal forecast system Global Seasonal forecast System 5 (GloSea5) which has high
ocean resolution, a comprehensive representation of the stratosphere, and interactive sea ice physics, all of
which mediate predictable teleconnections to the North Atlantic as shown below.

2. Predictability of the North Atlantic Oscillation

The forecasts used here were produced using the Met Office Global Seasonal forecast System 5 (GloSea5).
The climate model at the core of this forecast system is Hadley Centre Global Environmental Model version 3
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with atmospheric resolution of 0.83° longitude by 0.55° latitude, 85 quasi-horizontal atmospheric levels,
and an upper boundary at 85 km near the mesopause. The ocean resolution is 0.25° globally in both
latitude and longitude with 75 quasi-horizontal levels. This resolution is necessary to reduce key biases in
the ocean and atmosphere and give a realistic winter blocking climatology in the model [Scaife et al.,
2011]. A 24-member ensemble of forecasts was run for each winter in the period 1993 to 2012 with
lagged start dates centered on 1 November (25 October, 1 November, and 9 November) and eight
members initialized on each of the three start dates. Members from the same start date differ only by
stochastic physics [Arribas et al., 2011]. Initial atmospheric and land surface data were taken from ECMWF
Re-Analysis (ERA)-Interim observational reanalyses, and initial conditions for the global ocean and sea ice
concentration were from the Forecasting Ocean Assimilation Model (FOAM) system [Blockley et al., 2013].
This configuration allows very skillful predictions of various slowly varying components of the climate
system to be made for the coming winter (Table S1).

Figure 1 shows the skill of predicting the year to year fluctuations in the winter surface NAO (difference in
sea level pressure between Iceland and Azores) at lead times of 1 to 4months, well beyond weather
forecast time scales. The resulting correlation coefficient between the ensemble average of 24 forecast
members per winter and the observed surface NAO is 0.62 in GloSea5. This is statistically significant at the
99% level of confidence (using a t test and allowing for the small lagged autocorrelation in model and
observations). It confirms potential predictability hinted at in statistical studies [Folland et al., 2012; Cohen
and Jones, 2011] and atmospheric simulations with prescribed ocean conditions [Rodwell et al., 1999;Mehta
et al., 2000; Bretherton and Battisti, 2000] and supports recent results for the Arctic Oscillation [Riddle et al.,
2013], using a seasonal forecast system based on first physical principles. The value achieved here greatly
exceeds persistence forecast skill (0.15) and suggests that useful levels of seasonal forecast skill for the
surface NAO can be achieved in operational dynamical forecast systems. Our result is also insensitive to the
details of the model or the hindcast. For example, a repeat hindcast using a new dynamical core [Walters
et al., 2013] resulted in a similar correlation score of 0.6, as did removal of individual strong and predictable
NAOwinters such as 2009/2010 [Fereday et al., 2012] or the poorly predicted winter of 2004/2005 (Figure S1
in the supporting information). None of these changes reduces the significance of the correlation below
the 95% level. Note also that the forecast skill in our system arises largely from interannual variability rather
than trends or low-frequency variability, as differences in the surface NAO from 1 year to the next are
skillfully predicted with a correlation coefficient of 0.46 which is also significant at the 95% level, particularly for
years which project strongly on to the NAO (Figure S1). As a further check we also calculated probabilistic
skill and reliability scores. Relative operating characteristic scores [World Meteorological Organization
(WMO), 1992] for lower tercile winter temperatures are 0.70 for the Northern Hemisphere (20–90 N), 0.77
for North America (50–165W, 10–85 N), and 0.65 for Europe (30W–40E, 30–80 N), with high levels of
reliability for all of these regions.

Figure 1. Predictability of the winter North Atlantic Oscillation. The NAO in observations (black line), ensemble mean
forecasts (orange line), and individual ensemble members (orange dots) in winter (December to February (DJF)) hindcasts.
The NAO is measured as the sea level pressure difference between Iceland and the Azores, but the skill is insensitive to the
precise definition as large-scale patterns are frequently well captured (Figure S1). Observations, ensemblemean, and ensemble
members are normalized by their respective standard deviations. Anomalies are for December to February, and forecasts were
initialized from dates centered on 1 November. The correlation score of 0.62 is significant at the 99% level according to a t test
and allowing for the small lagged autocorrelation in forecasts and observations.
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3. Sources of Predictability

While we cannot assess causality without additional experiments, which are beyond the scope of this
study, digging deeper into the forecasts reveals several potential sources of predictable signals (Table S1 in
the supporting information). One source of predictability originates in the tropical Pacific. Previous studies
have shown that the El Niño–Southern Oscillation can drive interannual variations in the NAO [Brönnimann
et al., 2007] and hence Atlantic and European winter climate via the stratosphere [Bell et al., 2009].
Figures 2b and 2c confirm that this teleconnection to the tropical Pacific is active in our experiments, with
forecasts initialized in El Niño/La Niña conditions in November tending to be followed by negative/positive
NAO conditions in winter. Established mechanisms [Bell et al., 2009] operate in the forecasts, with deep
easterly anomalies occurring in the extratropical jet stream after descending from the stratosphere in
midwinter (Figure 2a).

Previous studies also identify precursors to the NAO in North Atlantic Ocean temperatures [Rodwell et al., 1999;
Frankignoul, 1985; Rodwell and Folland, 2002]. By selecting forecasts in years with a warm or cold north Atlantic
subpolar gyre in November, we can examine the resulting winter signal in the atmospheric circulation.
Forecasts starting from cold/warm North Atlantic states also result in winter predictions with more positive/
negative NAO (Figures 2d–2f), although pattern correlation is low in this case. Note that although the ENSO

Figure 2. Predictable teleconnections to the North Atlantic. (a, d, g, and j) Winter (DJF) jet stream winds (m s�1) and (b, e, h, and k) sea level pressure (hPa) signals in
forecasts and (c, f, i, and l) observations, from the El Niño–Southern Oscillation (ENSO) shown in Figures 2a–2c, North Atlantic Ocean heat content in the subpolar gyre
shown in Figures 2d–2f, sea ice area in the Kara Sea shown in Figures 2g–2i, and the quasi-biennial oscillation shown in Figures 2i–2k. Resulting winter differences are
shown between upper and lower terciles of each factor measured in November. All factors are highly predictable (Table S1). Jet stream winds are composite daily
zonal wind anomalies at 60N for the Atlantic sector (90°W–60°E). Pattern correlations between predicted and observed sea level pressure patterns were 0.83, 0.14,
0.44, and 0.45, respectively, and significance at the 90% level is shown by hatching.
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signal is of reasonable strength, in
many of the cases of predictability
in Figure 2, forecasts show evidence
of the same mechanisms and
patterns operating as in the real
world but with a weaker signal; we
return to this later.

Our third teleconnection to the
NAO arises from the initialization of
Arctic sea ice, particularly in the
Kara Sea to the north of Europe.
Interannual variability of sea ice and
hence surface temperature is large
here and has previously been
connected to the generation of
large-scale circulation anomalies
[Cohen and Jones, 2011; Yang and
Christensen, 2012]. Figures 2h and 2i
show the association between sea
ice anomalies in this region in
November and the subsequent
winter circulation in forecasts and
observations. As identified in other
studies [Yang and Christensen, 2012]

low/high sea ice concentrations in the Kara Sea in November precede negative/positive NAO anomalies,
with anomalous pressure gradients over northernmost Europe and the East Atlantic.

Our final teleconnection to the NAO arises from the quasi-biennial oscillation (QBO) in the tropical lower
stratosphere. Interannual variability between westerly and easterly phases of the QBO has long been
known to influence the troposphere in the Atlantic sector [Ebdon, 1975] in the sense shown in Figure 2, with
westerly QBO being associated with a stronger extratropical jet, particularly in early winter [Pascoe et al.,
2005]. Figures 2j–2l again show a similar but weaker forecast signal.

4. Anomalous Signal-to-Noise Ratio

Despite the reproduction of known teleconnection patterns, it is clear from Figure 2 that the amplitude of
signals in the forecasts is smaller than in observations. Similarly, while the ensemble mean signal in these
forecasts correlates well with the observed NAO (corr = 0.62), the signal-to-noise ratio defined as the
ensemble mean standard deviation divided by the total ensemble member standard deviation [Kumar,
2009] is low (s= 0.2). Despite this, the variability of the NAO from individual forecast members agrees well
with observed variability and is around 8 hPa, so it is only the ensemble mean signal and not the variability
of ensemble members that is too small. This presents something of a puzzle because for a perfect forecast
system the expected signal-to-noise ratio and the correlation are directly related. Indeed, given the
ensemble mean forecast correlation of 0.62, we would expect a signal-to-noise ratio much higher than
found here [Kumar, 2009] (Figure 2). The answer lies in the weak signals in the forecast system (Figure 2)
which result in the correlation between individual forecast members and the observations being several
times higher than correlations between pairs of forecasts, a result similar to that found in atmosphere only
experiments [Mehta et al., 2000]. In summary, individual forecast members contain weaker predictable
signals than the observations.

Despite the high skill in predicting extratropical winter climate, low signal-to-noise ratios mean that large
forecast ensembles are still needed to achieve a given skill. This is illustrated by systematically sampling
subsets of forecasts from the full ensemble of 24 members (Figure 3). Ensemble mean prediction skill for
the NAO increases with the number of forecast members and is still increasing, albeit more slowly, as the
full size of our ensemble is approached. Just this scenario has been previously examined from a statistical

Figure 3. Ensemble size and prediction skill. The increase of correlation skill
score of ensemble mean forecasts of the NAO with increasing ensemble size,
ranging fromonemember to 24members (solid curve). The dotted curve shows
a simple theoretical fit [Murphy et al., 1990] to the increase in skill with ensemble
size. The horizontal line shows the full 24-member skill realized in the forecast.
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viewpoint [Murphy, 1990], and the skill limit of an infinite-sized ensemble depends only on the average
correlation between pairs of forecast members and the average correlation between forecast members
and observations. This limit exceeds 0.8 for the NAO in our system. Along with improvements in the
modeled signal strength, increased ensemble size could therefore lead to further increases in seasonal
forecast skill for the extratropics.

5. Discussion: Implications for Regional Prediction

The NAO governs many aspects of European and North American winter weather, and predictability of the
NAO therefore leads to similarly skillful predictions of surface winter climate (Figure 4). For example, the risk
of damaging winter wind storms is highly relevant to the insurance sector [Renggli et al., 2011], and this
quantity can be predicted with high levels of skill across northern Europe and large areas of North America
(Figure 4a). Similarly, winter temperatures have impacts on energy pricing and can disrupt transport
networks [Palin et al., 2013] but show predictability across large areas around the Atlantic Basin in our
seasonal forecasts (Figure 4c). Finally, also related to atmospheric circulation, skillful prediction of near-
surface winter wind speeds is demonstrated, again across large areas of Europe and North America
(Figure 4e). This quantity is increasingly important as it governs year to year variations in the supply of wind-
generated renewable energy. While Figures 4a, 4c, and 4e show large areas of significant correlation skill
between the forecasts and observed historical conditions, there are patches of low skill for some fields in
regions known to be affected by the NAO, such as temperature in northern Europe, which may arise due to
imperfect model teleconnections. It is therefore interesting to ask how well the forecast NAO alone would
serve as a proxy for regional prediction. Using only the forecast NAO (Figures 4b, 4d, and 4f) suggests that
much of the skill in our forecasts arises from the prediction of the NAO alone. For example, the small regions
where storminess is poorly predicted in Figure 4a coincide with regions where the NAO influence is weak
(Figure 4b). Furthermore, while skill in North America arises from ENSO and the NAO, for regions such as

Figure 4. Forecast skill of surface winter weather conditions. Correlation score for (a and b) the frequency of winter storms
(measured by tenth percentile daily sea level pressure minima), (c and d) winter mean temperature, and (e and f) winter
mean wind speed (mean of daily values at 10m altitude). Observed storminess, temperature, and wind speed are from the
ERA-Interim reanalysis [Dee et al., 2011] and are correlated with forecast storminess, temperature, and wind speed on the
left and with forecast NAO on the right. Hatching indicates values above 90% statistical significance according to a student
t test and allowing for autocorrelation. Scores on the right show the modulus of the correlation.
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Europe where the NAO dominates, then simply using the forecast NAO may actually improve regional
predictions (Figure 4d). Using either methodology, and assuming that the recent 20 year period is
representative of coming years, predictions from this system could allow plans to be made months ahead for
the risk of key weather-related impacts on society.
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