114 research outputs found

    Technical skill assessment in minimally invasive surgery using artificial intelligence: a systematic review.

    Get PDF
    BACKGROUND Technical skill assessment in surgery relies on expert opinion. Therefore, it is time-consuming, costly, and often lacks objectivity. Analysis of intraoperative data by artificial intelligence (AI) has the potential for automated technical skill assessment. The aim of this systematic review was to analyze the performance, external validity, and generalizability of AI models for technical skill assessment in minimally invasive surgery. METHODS A systematic search of Medline, Embase, Web of Science, and IEEE Xplore was performed to identify original articles reporting the use of AI in the assessment of technical skill in minimally invasive surgery. Risk of bias (RoB) and quality of the included studies were analyzed according to Quality Assessment of Diagnostic Accuracy Studies criteria and the modified Joanna Briggs Institute checklists, respectively. Findings were reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. RESULTS In total, 1958 articles were identified, 50 articles met eligibility criteria and were analyzed. Motion data extracted from surgical videos (n = 25) or kinematic data from robotic systems or sensors (n = 22) were the most frequent input data for AI. Most studies used deep learning (n = 34) and predicted technical skills using an ordinal assessment scale (n = 36) with good accuracies in simulated settings. However, all proposed models were in development stage, only 4 studies were externally validated and 8 showed a low RoB. CONCLUSION AI showed good performance in technical skill assessment in minimally invasive surgery. However, models often lacked external validity and generalizability. Therefore, models should be benchmarked using predefined performance metrics and tested in clinical implementation studies

    ClipAssistNet: bringing real-time safety feedback to operating rooms

    Get PDF
    Purpose: Cholecystectomy is one of the most common laparoscopic procedures. A critical phase of laparoscopic cholecystectomy consists in clipping the cystic duct and artery before cutting them. Surgeons can improve the clipping safety by ensuring full visibility of the clipper, while enclosing the artery or the duct with the clip applier jaws. This can prevent unintentional interaction with neighboring tissues or clip misplacement. In this article, we present a novel real-time feedback to ensure safe visibility of the instrument during this critical phase. This feedback incites surgeons to keep the tip of their clip applier visible while operating. Methods: We present a new dataset of 300 laparoscopic cholecystectomy videos with frame-wise annotation of clipper tip visibility. We further present ClipAssistNet, a neural network-based image classifier which detects the clipper tip visibility in single frames. ClipAssistNet ensembles predictions from 5 neural networks trained on different subsets of the dataset. Results: Our model learns to classify the clipper tip visibility by detecting its presence in the image. Measured on a separate test set, ClipAssistNet classifies the clipper tip visibility with an AUROC of 0.9107, and 66.15% specificity at 95% sensitivity. Additionally, it can perform real-time inference (16 FPS) on an embedded computing board; this enables its deployment in operating room settings. Conclusion: This work presents a new application of computer-assisted surgery for laparoscopic cholecystectomy, namely real-time feedback on adequate visibility of the clip applier. We believe this feedback can increase surgeons' attentiveness when departing from safe visibility during the critical clipping of the cystic duct and artery

    Surgical Phase Recognition: From Public Datasets to Real-World Data

    Get PDF
    Automated recognition of surgical phases is a prerequisite for computer-assisted analysis of surgeries. The research on phase recognition has been mostly driven by publicly available datasets of laparoscopic cholecystectomy (Lap Chole) videos. Yet, videos observed in real-world settings might contain challenges, such as additional phases and longer videos, which may be missing in curated public datasets. In this work, we study (i) the possible data distribution discrepancy between videos observed in a given medical center and videos from existing public datasets, and (ii) the potential impact of this distribution difference on model development. To this end, we gathered a large, private dataset of 384 Lap Chole videos. Our dataset contained all videos, including emergency surgeries and teaching cases, recorded in a continuous time frame of five years. We observed strong differences between our dataset and the most commonly used public dataset for surgical phase recognition, Cholec80. For instance, our videos were much longer, included additional phases, and had more complex transitions between phases. We further trained and compared several state-of-the-art phase recognition models on our dataset. The models’ performances greatly varied across surgical phases and videos. In particular, our results highlighted the challenge of recognizing extremely under- represented phases (usually missing in public datasets); the major phases were recognized with at least 76 percent recall. Overall, our results highlighted the need to better understand the distribution of the video data phase that recognition models are trained on

    Innate and adaptive immune responses following PD-L1 blockade in treating chronic murine alveolar echinococcosis.

    Get PDF
    BACKGROUND Programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) immune checkpoint blockade is efficacious in certain cancer therapies. OBJECTIVES The present study aimed to provide a picture about the development of innate and adaptive immune responses upon PD-L1 blockade in treating chronic murine AE. METHODS Immune treatment started at 6 weeks post E. multilocularis-infection, and was maintained for 8 weeks with twice per week anti-PD-L1 administration (intraperitoneal). The study included an outgroup-control with mice perorally medicated with albendazole five days/week, and another one with both treatments combined. Assessment of treatment efficacy was based on determining parasite weight, innate and adaptive immune cell profiles, histopathology, and liver tissue cytokine levels. RESULTS/CONCLUSIONS Findings showed that the parasite load was significantly reduced in response to PD-L1 blockade, and this blockade a) contributed to T cell activity by increasing CD4+ /CD8+ effector T cells, and decreasing Tregs; b) had the capacity to re-store DCs and Kupffer cells/Macrophages; c) suppressed NKT and NK cells; and thus d) lead to an improved control of E. multilocularis infection in mice. This study suggests that the PD-L1 pathway plays an important role by regulating adaptive and innate immune cells against E. multilocularis infection, with significant modulation of tissue inflammation

    Dissection and hemostasis with hydroxilated polyvinyl acetal tampons in open thyroid surgery

    Get PDF
    BACKGROUND: The essential objectives for thyroidectomy are: avoidance of injury to the recurrent laryngeal nerves, conservation of the parathyroid glands, an accurate haemostasis and an excellent cosmesis. In the last 10 years major improvements and new technologies have been proposed and applied in thyroid surgery; among these mini-invasive thyroidectomy, regional anaesthesia and intraoperative neuromonitoring, and new devices for achieving dissection and haemostasis. Minor bleeding from small vessels could be a major complication in thyroid surgery. The purpose of ligating vessels is to maintain the surgical site free from an excess of blood and reduce blood loss in the patient. MATERIALS AND METHODS: Hydroxylated polyvinyl acetal tampons (HPA) are made by a synthetic, open cell foam structure able to absorb fluids up to 25 times the initial weight. We tested their efficacy for small bleeding control and tissue dissection during several thyroid procedures. RESULTS: HPA tampons have been found extremely useful to absorb blood coming from minor and diffuse loss, helping to control bleeding by a combined action of fluid absorption and local compression. The porous design of the tampon allows the use of the suction device right through the tampon itself. Thanks to the initial mildly hard consistency, we also used HPA tampons as dissecting instruments. CONCLUSION: In our experience the use of HPA tampons resulted extremely efficient for minor bleeding control, fluids removal and tissue dissection during thyroid surgery

    Half-Metallic Ferromagnetism in Double Perovskite Ca2CoMoO6 Compound : DFT + U Calculations

    Get PDF
    A systematic investigation on magnetism and spin-resolved electronic properties in double perovskite Ca2CoMoO6 compound was performed by using the full-potential augmented plane wave plus local orbitals (APW+lo) method within the generalized gradient approximation (GGA-PBE) and GGA-PBE+U scheme. The stability of monoclinic phase (P2114) relative to the tetragonal (I487) and cubic (Fmm 225) phase is evaluated. We investigate the effect of Hubbard parameter Uon the ground-state structural and electronic properties of Ca2CoMoO6 compound. We found that the ferromagnetic ground state is the most stable magnetic configuration. The calculated spin-polarized band structures and densities of states indicate that the Ca2CoMoO6 compound is half-metallic (HM) and half-semiconductor (HSC) ferromagnetic (FM) semiconductor with a total magnetic moment of 6.0 using GGA-PBE and GGA-PBE+U, respectively. The Hubbard U parameter provides better description of the electronic structure. Using the Vampire code, an estimation of exchange couplings and magnetic Curie temperature is calculated. Further, our results regarding the magnetic properties of this compound reveal their ferromagnetic nature. The GGA-PBE+U approach provides better band gap results as compared to GGA-PBE approximation. These results imply that Ca2CoMoO6 could be a promising magnetic semiconductor for application in spintronic devices

    Integrative analysis of a phase 2 trial combining lenalidomide with CHOP in angioimmunoblastic T-cell lymphoma.

    Get PDF
    Angioimmunoblastic T-cell lymphoma (AITL) is a frequent T-cell lymphoma in the elderly population that has a poor prognosis when treated with cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) therapy. Lenalidomide, which has been safely combined with CHOP to treat B-cell lymphoma, has shown efficacy as a single agent in AITL treatment. We performed a multicentric phase 2 trial combining 25 mg lenalidomide daily for 14 days per cycle with 8 cycles of CHOP21 in previously untreated AITL patients aged 60 to 80 years. The primary objective was the complete metabolic response (CMR) rate at the end of treatment. Seventy-eight of the 80 patients enrolled were included in the efficacy and safety analysis. CMR was achieved in 32 (41%; 95% confidence interval [CI], 30%-52.7%) patients, which was below the prespecified CMR rate of 55% defined as success in the study. The 2-year progression-free survival (PFS) was 42.1% (95% CI, 30.9%-52.8%), and the 2-year overall survival was 59.2% (95% CI, 47.3%-69.3%). The most common toxicities were hematologic and led to treatment discontinuation in 15% of patients. This large prospective and uniform series of AITL treatment data was used to perform an integrative analysis of clinical, pathologic, biologic, and molecular data. TET2, RHOA, DNMT3A, and IDH2 mutations were present in 78%, 54%, 32%, and 22% of patients, respectively. IDH2 mutations were associated with distinct pathologic and clinical features and DNMT3A was associated with shorter PFS. In conclusion, the combination of lenalidomide and CHOP did not improve the CMR in AITL patients. This trial clarified the clinical impact of recurrent mutations in AITL. This trial was registered at www.clincialtrials.gov as #NCT01553786

    An APRI+ALBI Based Multivariable Model as Preoperative Predictor for Posthepatectomy Liver Failure.

    Get PDF
    OBJECTIVE AND BACKGROUND Clinically significant posthepatectomy liver failure (PHLF B+C) remains the main cause of mortality after major hepatic resection. This study aimed to establish an APRI+ALBI, aspartate aminotransferase to platelet ratio (APRI) combined with albumin-bilirubin grade (ALBI), based multivariable model (MVM) to predict PHLF and compare its performance to indocyanine green clearance (ICG-R15 or ICG-PDR) and albumin-ICG evaluation (ALICE). METHODS 12,056 patients from the National Surgical Quality Improvement Program (NSQIP) database were used to generate a MVM to predict PHLF B+C. The model was determined using stepwise backwards elimination. Performance of the model was tested using receiver operating characteristic curve analysis and validated in an international cohort of 2,525 patients. In 620 patients, the APRI+ALBI MVM, trained in the NSQIP cohort, was compared with MVM's based on other liver function tests (ICG clearance, ALICE) by comparing the areas under the curve (AUC). RESULTS A MVM including APRI+ALBI, age, sex, tumor type and extent of resection was found to predict PHLF B+C with an AUC of 0.77, with comparable performance in the validation cohort (AUC 0.74). In direct comparison with other MVM's based on more expensive and time-consuming liver function tests (ICG clearance, ALICE), the APRI+ALBI MVM demonstrated equal predictive potential for PHLF B+C. A smartphone application for calculation of the APRI+ALBI MVM was designed. CONCLUSION Risk assessment via the APRI+ALBI MVM for PHLF B+C increases preoperative predictive accuracy and represents an universally available and cost-effective risk assessment prior to hepatectomy, facilitated by a freely available smartphone app

    Tob1 is a constitutively expressed repressor of liver regeneration

    Get PDF
    How proliferative and inhibitory signals integrate to control liver regeneration remains poorly understood. A screen for antiproliferative factors repressed after liver injury identified transducer of ErbB2.1 (Tob1), a member of the PC3/BTG1 family of mito-inhibitory molecules as a target for further evaluation. Tob1 protein decreases after 2/3 hepatectomy in mice secondary to posttranscriptional mechanisms. Deletion of Tob1 increases hepatocyte proliferation and accelerates restoration of liver mass after hepatectomy. Down-regulation of Tob1 is required for normal liver regeneration, and Tob1 controls hepatocyte proliferation in a dose-dependent fashion. Tob1 associates directly with both Caf1 and cyclin-dependent kinase (Cdk) 1 and modulates Cdk1 kinase activity. In addition, Tob1 has significant effects on the transcription of critical cell cycle components, including E2F target genes and genes involved in p53 signaling. We provide direct evidence that levels of an inhibitory factor control the rate of liver regeneration, and we identify Tob1 as a crucial check point molecule that modulates the expression and activity of cell cycle proteins
    • 

    corecore