290 research outputs found

    Abrupt sea surface pH change at the end of the Younger Dryas in the central sub-equatorial Pacific inferred from boron isotope abundance in corals (<i>Porites</i>)

    Get PDF
    The "δ<sup>11</sup>B-pH" technique was applied to modern and ancient corals <i>Porites</i> from the sub-equatorial Pacific areas (Tahiti and Marquesas) spanning a time interval from 0 to 20.720 calendar years to determine the amplitude of pH changes between the Last Glacial Period and the Holocene. Boron isotopes were measured by Multi-Collector – Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS) with an external reproducibility of 0.25&permil;, allowing a precision of about &plusmn;0.03 pH-units for pH values between 8 and 8.3. The boron concentration [B] and isotopic composition of modern samples indicate that the temperature strongly controls the partition coefficient K<sub><i>D</i></sub> for different aragonite species. Modern coral δ<sup>11</sup>B values and the reconstructed sea surface pH values for different Pacific areas match the measured pH expressed on the seawater scale and confirm the calculation parameters that were previously determined by laboratory calibration exercises. Most ancient sea surface pH reconstructions near Marquesas are higher than modern values. These values range between 8.19 and 8.27 for the Holocene and reached 8.30 at the end of the last glacial period (20.7 kyr BP). At the end of the Younger Dryas (11.50&plusmn;0.1 kyr BP), the central sub-equatorial Pacific experienced a dramatic drop of up to 0.2 pH-units from the average pH of 8.2 before and after this short event. Using the marine carbonate algorithms, we recalculated the aqueous <i>p</i>CO<sub>2</sub> to be 440&plusmn;25 ppmV at around 11.5 kyr BP for corals at Marquesas and ~500 ppmV near Tahiti where it was assumed that <i>p</i>CO<sub>2</sub> in the atmosphere was 250 ppmV. Throughout the Holocene, the difference in <i>p</i>CO<sub>2</sub> between the ocean and the atmosphere at Marquesas (Δ<i>p</i>CO<sub>2</sub>) indicates that the surface waters behave as a moderate CO<sub>2</sub> sink or source (−53 to 20 ppmV) during El Niño-like conditions. By contrast, during the last glacial/interglacial transition, this area was a marked source of CO<sub>2</sub> (21 to 92 ppmV) for the atmosphere, highlighting predominant La Niña-like conditions. Such conditions were particularly pronounced at the end of the Younger Dryas with a large amount of CO<sub>2</sub> released with Δ<i>p</i>CO<sub>2</sub> of +185&plusmn;25 ppmV. This last finding provides further evidence of the marked changes in the surface water pH and temperature in the equatorial Pacific at the Younger Dryas-Holocene transition and the strong impact of oceanic dynamic on the atmospheric CO<sub>2</sub> content

    The collapse of protoplanetary clumps formed through disc instability: 3D simulations of the pre-dissociation phase

    Full text link
    We present 3D smoothed particle hydrodynamics simulations of the collapse of clumps formed through gravitational instability in the outer part of a protoplanetary disc. The initial conditions are taken directly from a global disc simulation, and a realistic equation of state is used to follow the clumps as they contract over several orders of magnitude in density, approaching the molecular hydrogen dissociation stage. The effects of clump rotation, asymmetries, and radiative cooling are studied. Rotation provides support against fast collapse, but non-axisymmetric modes develop and efficiently transport angular momentum outward, forming a circumplanetary disc. This transport helps the clump reach the dynamical collapse phase, resulting from molecular hydrogen dissociation, on a thousand-year timescale, which is smaller than timescales predicted by some previous spherical 1D collapse models. Extrapolation to the threshold of the runaway hydrogen dissociation indicates that the collapse timescales can be shorter than inward migration timescales, suggesting that clumps could survive tidal disruption and deliver a proto-gas giant to distances of even a few AU from the central star.Comment: Accepted for publication in MNRA

    Increasing the frequency of hand washing by healthcare workers does not lead to commensurate reductions in staphylococcal infection in a hospital ward

    Get PDF
    Hand hygiene is generally considered to be the most important measure that can be applied to prevent the spread of healthcare-associated infection (HAI). Continuous emphasis on this intervention has lead to the widespread opinion that HAI rates can be greatly reduced by increased hand hygiene compliance alone. However, this assumes that the effectiveness of hand hygiene is not constrained by other factors and that improved compliance in excess of a given level, in itself, will result in a commensurate reduction in the incidence of HAI. However, several researchers have found the law of diminishing returns to apply to hand hygiene, with the greatest benefits occurring in the first 20% or so of compliance, and others have demonstrated that poor cohorting of nursing staff profoundly influences the effectiveness of hand hygiene measures. Collectively, these findings raise intriguing questions about the extent to which increasing compliance alone can further reduce rates of HAI. In order to investigate these issues further, we constructed a deterministic Ross-Macdonald model and applied it to a hypothetical general medical ward. In this model the transmission of staphylococcal infection was assumed to occur after contact with the transiently colonized hands of HCWs, who, in turn, acquire contamination only by touching colonized patients. The aim of the study was to evaluate the impact of imperfect hand cleansing on the transmission of staphylococcal infection and to identify, whether there is a limit, above which further hand hygiene compliance is unlikely to be of benefit. The model demonstrated that if transmission is solely via the hands of HCWs, it should, under most circumstances, be possible to prevent outbreaks of staphylococcal infection from occurring at a hand cleansing frequencies <50%, even with imperfect hand hygiene. The analysis also indicated that the relationship between hand cleansing efficacy and frequency is not linear - as efficacy decreases, so the hand cleansing frequency required to ensure R0<1 increases disproportionately. Although our study confirmed hand hygiene to be an effective control measure, it demonstrated that the law of diminishing returns applies, with the greatest benefit derived from the first 20% or so of compliance. Indeed, our analysis suggests that there is little benefit to be accrued from very high levels of hand cleansing and that in most situations compliance >40% should be enough to prevent outbreaks of staphylococcal infection occurring, if transmission is solely via the hands of HCWs. Furthermore we identified a non-linear relationship between hand cleansing efficacy and frequency, suggesting that it is important to maximise the efficacy of the hand cleansing process

    Accreting Protoplanets in the LkCa 15 Transition Disk

    Full text link
    Exoplanet detections have revolutionized astronomy, offering new insights into solar system architecture and planet demographics. While nearly 1900 exoplanets have now been discovered and confirmed, none are still in the process of formation. Transition discs, protoplanetary disks with inner clearings best explained by the influence of accreting planets, are natural laboratories for the study of planet formation. Some transition discs show evidence for the presence of young planets in the form of disc asymmetries or infrared sources detected within their clearings, as in the case of LkCa 15. Attempts to observe directly signatures of accretion onto protoplanets have hitherto proven unsuccessful. Here we report adaptive optics observations of LkCa 15 that probe within the disc clearing. With accurate source positions over multiple epochs spanning 2009 - 2015, we infer the presence of multiple companions on Keplerian orbits. We directly detect H{\alpha} emission from the innermost companion, LkCa 15 b, evincing hot (~10,000 K) gas falling deep into the potential well of an accreting protoplanet.Comment: 35 pages, 3 figures, 1 table, 9 extended data item

    Genomics accelerated isolation of a new stem rust avirulence gene - wheat resistance gene pair

    Get PDF
    Stem rust caused by the fungus Puccinia graminis f. sp. tritici (Pgt) is a devastating disease of the global staple crop wheat. Although this disease was largely controlled by genetic resistance in the latter half of the 20th century, new strains of Pgt with increased virulence, such as Ug99, have evolved by somatic hybridisation and mutation. These newly emerged strains have caused significant losses in Africa and other regions and their continued spread threatens global wheat production. Breeding for disease resistance provides the most cost-effective control of wheat rust diseases. A number of race-specific rust resistance genes have been characterised in wheat and most encode immune receptors of the nucleotide-binding leucine-rich repeat (NLR) class. These receptors recognize pathogen effector proteins often known as avirulence (Avr) proteins. However, only two Avr genes have been identified in Pgt to date, AvrSr35 and AvrSr50 and none in other cereal rusts, which hinders efforts to understand the evolution of virulence in rust populations. The Sr27 resistance gene was first identified in a wheat line carrying an introgression of the 3R chromosome from Imperial rye. Although not deployed widely in wheat, Sr27 is widespread in the artificial crop species Triticosecale (triticale) which is a wheat-rye hybrid and is a host for Pgt. Sr27 is effective against Ug99 and other recently emerged Pgt strains. Here we identify both the Sr27 gene in wheat and the corresponding AvrSr27 gene in Pgt and show that virulence to Sr27 can arise experimentally and in the field through deletion mutations, copy number variation and expression level polymorphisms at the AvrSr27 locus

    Monitoring Voltage-Dependent Charge Displacement of Shaker B-IR K+ Ion Channels Using Radio Frequency Interrogation

    Get PDF
    Here we introduce a new technique that probes voltage-dependent charge displacements of excitable membrane-bound proteins using extracellularly applied radio frequency (RF, 500 kHz) electric fields. Xenopus oocytes were used as a model cell for these experiments, and were injected with cRNA encoding Shaker B-IR (ShB-IR) K+ ion channels to express large densities of this protein in the oocyte membranes. Two-electrode voltage clamp (TEVC) was applied to command whole-cell membrane potential and to measure channel-dependent membrane currents. Simultaneously, RF electric fields were applied to perturb the membrane potential about the TEVC level and to measure voltage-dependent RF displacement currents. ShB-IR expressing oocytes showed significantly larger changes in RF displacement currents upon membrane depolarization than control oocytes. Voltage-dependent changes in RF displacement currents further increased in ShB-IR expressing oocytes after ∼120 µM Cu2+ addition to the external bath. Cu2+ is known to bind to the ShB-IR ion channel and inhibit Shaker K+ conductance, indicating that changes in the RF displacement current reported here were associated with RF vibration of the Cu2+-linked mobile domain of the ShB-IR protein. Results demonstrate the use of extracellular RF electrodes to interrogate voltage-dependent movement of charged mobile protein domains — capabilities that might enable detection of small changes in charge distribution associated with integral membrane protein conformation and/or drug–protein interactions

    Transcriptional Profiles Uncover Aspergillus flavus-Induced Resistance in Maize Kernels

    Get PDF
    Aflatoxin contamination caused by the opportunistic pathogen A. flavus is a major concern in maize production prior to harvest and through storage. Previous studies have highlighted the constitutive production of proteins involved in maize kernel resistance against A. flavus’ infection. However, little is known about induced resistance nor about defense gene expression and regulation in kernels. In this study, maize oligonucleotide arrays and a pair of closely-related maize lines varying in aflatoxin accumulation were used to reveal the gene expression network in imbibed mature kernels in response to A. flavus’ challenge. Inoculated kernels were incubated 72 h via the laboratory-based Kernel Screening Assay (KSA), which highlights kernel responses to fungal challenge. Gene expression profiling detected 6955 genes in resistant and 6565 genes in susceptible controls; 214 genes induced in resistant and 2159 genes induced in susceptible inoculated kernels. Defense related and regulation related genes were identified in both treatments. Comparisons between the resistant and susceptible lines indicate differences in the gene expression network which may enhance our understanding of the maize-A. flavus interaction

    Method for Flow Measurement in Microfluidic Channels Based on Electrical Impedance Spectroscopy

    Full text link
    We have developed and characterized two novel micro flow sensors based on measuring the electrical impedance of the interface between the flowing liquid and metallic electrodes embedded on the channel walls. These flow sensors are very simple to fabricate and use, are extremely compact and can easily be integrated into most microfluidic systems. One of these devices is a micropore with two tantalum/platinum electrodes on its edges; the other is a micro channel with two tantalum /platinum electrodes placed perpendicular to the channel on its walls. In both sensors the flow rate is measured via the electrical impedance between the two metallic electrodes, which is the impedance of two metal-liquid junctions in series. The dependency of the metal-liquid junction impedance on the flow rate of the liquid has been studied. The effects of different parameters on the sensor's outputs and its noise behavior are investigated. Design guidelines are extracted and applied to achieve highly sensitive micro flow sensors with low noise.Comment: 11 pages, 7 figure

    Factors influencing nurses' compliance with Standard Precautions in order to avoid occupational exposure to microorganisms: A focus group study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nurses may acquire an infection during the provision of nursing care because of occupational exposure to microorganisms. Relevant literature reports that, compliance with Standard Precautions (a set of guidelines that can protect health care professionals from being exposed to microorganisms) is low among nurses. Additionally, high rates of exposure to microorganisms among nurses via several modes (needlesticks, hand contamination with blood, exposure to air-transmitted microorganisms) occur. The aim of the study was to study the factors that influence nurses' compliance with Standard Precaution in order to avoid occupational exposure to pathogens, by employing a qualitative research design.</p> <p>Method</p> <p>A focus group approach was used to explore the issue under study. Four focus groups (N = 30) were organised to elicit nurses' perception of the factors that influence their compliance with Standard Precautions. The Health Belief Model (HBM) was used as the theoretical framework and the data were analysed according to predetermined criteria.</p> <p>Results</p> <p>Following content analysis, factors that influence nurses' compliance emerged. Most factors could be applied to one of the main domains of the HBM: benefits, barriers, severity, susceptibility, cues to action, and self-efficacy.</p> <p>Conclusions</p> <p>Changing current behavior requires knowledge of the factors that may influence nurses' compliance with Standard Precautions. This knowledge will facilitate in the implementation of programs and preventive actions that contribute in avoiding of occupational exposure.</p
    corecore