73 research outputs found

    Patterns of antibiotic use in hospital-acquired infections.

    Get PDF
    BACKGROUND: Monitoring the use of antimicrobials in hospitalized patients is critical owing to the risk of resistance selection. This study aimed to describe the patterns of antimicrobial prescription for the most frequent healthcare-associated infections (HAIs) in France, relating drugs and microbiological data. METHODS: We used data from the 2017 point-prevalence survey of HAI and antimicrobial use in France, a large nationally representative sample survey of inpatients. We sought unambiguous correspondence between individual indications of antibiotic regimen and HAI sites to determine which molecules were directed towards which pathogen, considering its resistance profile. RESULTS: Among 75,698 adult patients from 401 hospitals, 5.1% had an active HAI and 4.3% were being treated for an HAI. The two most frequent antibiotic indications were lower respiratory tract (LRTI, 27.7%) and urinary tract infections (UTI, 18.4%). For LRTI, the most prescribed antibiotic was amoxicillin-clavulanic acid (27.6%) and most frequently isolated pathogens (each accounting for around 17% of isolates) were Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. Meticillin-resistant S. aureus LRTI was more likely to be treated with linezolid. For UTI, ofloxacin, ceftriaxone, amoxicillin/co-amoxiclav were most-prescribed (∼13% each) and E. coli predominantly isolated (52.0%). Extended-spectrum beta-lactamase-producing E. coli UTI were more likely treated by fosfomycin, pivmecillinam or ertapenem. CONCLUSIONS: This study provides a baseline of antimicrobial use in relation to microbiological information in patients with the most common HAIs. These results can serve to direct future efforts in antimicrobial stewardship. Our work could be extended to a broader population, notably in Europe where similar surveys have been conducted

    Previous Mental Load and Incentives Influence Anticipatory Arousal as Indexed by the Baseline Pupil Diameter in a Speech-in-Noise Task

    Get PDF
    Listening effort and fatigue are common experiences when conversing in noisy environments. Much research has investigated listening effort in relation to listening demand using the speech-in-noise paradigm. Recent conceptualizations of listening effort postulate that mental fatigue should result in decreased arousal and a reluctance to invest further effort, particularly when the effort is not worthwhile. The aim of the study was to investigate the influence of fatigue on listening effort, in interaction with listening demands and motivation. To induce fatigue 30 adults with normal hearing completed a 40-minute long speech-in-noise task (“load sequence”). Pre- and post-load sequence listening effort was probed in easy and hard listening demands (individually adjusted signal-to-noise ratios); with high and low motivation (manipulated with monetary incentives). Subjective effort, estimated performance, and tendency to quit listening were collected using rating scales. Baseline pupil diameter and mean pupil dilation were recorded as indices of anticipatory arousal and objective effort. Self-reported effort and mean pupil dilation were overall larger during hard SNR as compared to easy SNR. Baseline pupil diameter declined from pre- to post-load sequence, suggesting an overall decrease in arousal. Monetary incentives had no influence on the baseline pupil diameter for the easy SNR condition, but for the hard SNR condition larger incentives led to larger baseline pupil diameter. These results suggest that anticipatory arousal may be influenced by fatigue and motivation effects. Models of listening effort should account for the independent influence of motivation and previous load on anticipatory arousal and effort in distinct parameters

    Modulation of let-7 miRNAs controls the differentiation of effector CD8 T cells

    Get PDF
    The differentiation of naive CD8 T cells into effector cytotoxic T lymphocytes upon antigen stimulation is necessary for successful antiviral, and antitumor immune responses. Here, using a mouse model, we describe a dual role for the let-7 microRNAs in the regulation of CD8 T cell responses, where maintenance of the naive phenotype in CD8 T cells requires high levels of let-7 expression, while generation of cytotoxic T lymphocytes depends upon T cell receptor-mediated let-7 downregulation. Decrease of let-7 expression in activated T cells enhances clonal expansion and the acquisition of effector function through derepression of the let-7 targets, including Myc and Eomesodermin. Ultimately, we have identified a novel let-7-mediated mechanism, which acts as a molecular brake controlling the magnitude of CD8 T cell responses

    Identification and characterization of a rich population of CD34mesenchymal stem/stromal cells in human parotid, sublingual and submandibular glands

    Get PDF
    Mesenchymal stem/stromal cells (MSCs) play crucial roles in maintaining tissue homeostasis during physiological turnovers and injuries. Very little is known about the phenotype, distribution and molecular nature of MSCs in freshly isolated human salivary glands (SGs) as most reports have focused on the analysis of cultured MSCs. Our results demonstrate that the cell adhesion molecule CD34 was widely expressed by the MSCs of human major SGs, namely parotid (PAG), sublingual (SLG) and submandibular (SMG) glands. Further, gene expression analysis of CD34+ cells derived from fetal SMGs showed significant upregulation of genes involved in cellular adhesion, proliferation, branching, extracellular matrix remodeling and organ development. Moreover, CD34+ SMG cells exhibited elevated expression of genes encoding extracellular matrix, basement membrane proteins, and members of ERK, FGF and PDGF signaling pathways, which play key roles in glandular development, branching and homeostasis. In vitro CD34+ cell derived SG-MSCs revealed multilineage differentiation potential. Intraglandular transplantation of cultured MSCs in immunodeficient mice led to their engraftment in the injected and uninjected contralateral and ipsilateral glands. Engrafted cells could be localized to the stroma surrounding acini and ducts. In summary, our data show that CD34+ derived SG-MSCs could be a promising cell source for adoptive cell-based SG therapies, and bioengineering of artificial SGs

    Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo.

    Get PDF
    Collective cell migration is essential for morphogenesis, tissue remodelling and cancer invasion. In vivo, groups of cells move in an orchestrated way through tissues. This movement involves mechanical as well as molecular interactions between cells and their environment. While the role of molecular signals in collective cell migration is comparatively well understood, how tissue mechanics influence collective cell migration in vivo remains unknown. Here we investigated the importance of mechanical cues in the collective migration of the Xenopus laevis neural crest cells, an embryonic cell population whose migratory behaviour has been likened to cancer invasion. We found that, during morphogenesis, the head mesoderm underlying the cephalic neural crest stiffens. This stiffening initiates an epithelial-to-mesenchymal transition in neural crest cells and triggers their collective migration. To detect changes in their mechanical environment, neural crest cells use mechanosensation mediated by the integrin-vinculin-talin complex. By performing mechanical and molecular manipulations, we show that mesoderm stiffening is necessary and sufficient to trigger neural crest migration. Finally, we demonstrate that convergent extension of the mesoderm, which starts during gastrulation, leads to increased mesoderm stiffness by increasing the cell density underneath the neural crest. These results show that convergent extension of the mesoderm has a role as a mechanical coordinator of morphogenesis, and reveal a link between two apparently unconnected processes-gastrulation and neural crest migration-via changes in tissue mechanics. Overall, we demonstrate that changes in substrate stiffness can trigger collective cell migration by promoting epithelial-to-mesenchymal transition in vivo. More broadly, our results raise the idea that tissue mechanics combines with molecular effectors to coordinate morphogenesis

    Snake Venom Disintegrins and Cell Migration

    Get PDF
    Cell migration is a key process for the defense of pluricellular organisms against pathogens, and it involves a set of surface receptors acting in an ordered fashion to contribute directionality to the movement. Among these receptors are the integrins, which connect the cell cytoskeleton to the extracellular matrix components, thus playing a central role in cell migration. Integrin clustering at focal adhesions drives actin polymerization along the cell leading edge, resulting in polarity of cell movement. Therefore, small integrin-binding proteins such as the snake venom disintegrins that inhibit integrin-mediated cell adhesion are expected to inhibit cell migration. Here we review the current knowledge on disintegrin and disintegrin-like protein effects on cell migration and their potential use as pharmacological tools in anti-inflammatory therapy as well as in inhibition of metastatic invasion
    corecore