400 research outputs found
High-pressure, low-abundance water in bipolar outflows. Results from a Herschel-WISH survey
(Abridged) We present a survey of the water emission in a sample of more than
20 outflows from low mass young stellar objects with the goal of characterizing
the physical and chemical conditions of the emitting gas. We have used the HIFI
and PACS instruments on board the Herschel Space Observatory to observe the two
fundamental lines of ortho-water at 557 and 1670 GHz. These observations were
part of the "Water In Star-forming regions with Herschel" (WISH) key program,
and have been complemented with CO and H2 data. We find that the emission from
water has a different spatial and velocity distribution from that of the J=1-0
and 2-1 transitions of CO, but it has a similar spatial distribution to H2, and
its intensity follows the H2 intensity derived from IRAC images. This suggests
that water traces the outflow gas at hundreds of kelvins responsible for the H2
emission, and not the component at tens of kelvins typical of low-J CO
emission. A warm origin of the water emission is confirmed by a remarkable
correlation between the intensities of the 557 and 1670 GHz lines, which also
indicates the emitting gas has a narrow range of excitations. A non-LTE
radiative transfer analysis shows that while there is some ambiguity on the
exact combination of density and temperature values, the gas thermal pressure
nT is constrained within less than a factor of 2. The typical nT over the
sample is 4 10^{9} cm^{-3}K, which represents an increase of 10^4 with respect
to the ambient value. The data also constrain within a factor of 2 the water
column density. When this quantity is combined with H2 column densities, the
typical water abundance is only 3 10^{-7}, with an uncertainty of a factor of
3. Our data challenge current C-shock models of water production due to a
combination of wing-line profiles, high gas compressions, and low abundances.Comment: 21 pages, 13 figures. Accepted for publication in A&
Water in low-mass star-forming regions with Herschel (WISH-LM): High-velocity H2O bullets in L1448-MM observed with HIFI
Herschel-HIFI observations of water in the low-mass star-forming object
L1448-MM, known for its prominent outflow, are presented, as obtained within
the `Water in star-forming regions with Herschel' (WISH) key programme. Six
H2-16O lines are targeted and detected (E_up/k_B ~ 50-250 K), as is CO J= 10-9
(E_up/k_B ~ 305 K), and tentatively H2-18O 110-101 at 548 GHz. All lines show
strong emission in the "bullets" at |v| > 50 km/s from the source velocity, in
addition to a broad, central component and narrow absorption. The bullets are
seen much more prominently in HO than in CO with respect to the central
component, and show little variation with excitation in H2O profile shape.
Excitation conditions in the bullets derived from CO lines imply a temperature
>150 K and density >10^5 cm^-3, similar to that of the broad component. The
H2O/CO abundance ratio is similar in the "bullets" and the broad component, ~
0.05-1.0, in spite of their different origins in the molecular jet and the
interaction between the outflow and the envelope. The high H2O abundance
indicates that the bullets are H2 rich. The H2O cooling in the "bullets" and
the broad component is similar and higher than the CO cooling in the same
components. These data illustrate the power of Herschel-HIFI to disentangle
different dynamical components in low-mass star-forming objects and determine
their excitation and chemical conditions.Comment: Accepted for publication in A&
CAST: Recent results & future outlook
Çetin, Serkant Ali (Dogus Author) -- Ezer, Cemile (Dogus Author) -- Yıldız, Süleyman Cenk (Dogus Author) -- Conference full title: 6th Patras Workshop on Axions, WIMPs and WISPs, PATRAS 2010; Zurich; Switzerland; 5 July 2010 through 9 July 2010.The CAST (CERN Axion Solar Telescope) experiment is searching for solar axions by their conversion into photons inside the magnet pipes of an LHC dipole. The analysis of data taken so far has shown no signal above the background, thus implying an upper limit to the axion-photon coupling of ga < 0.85 × 10-10GeV -1 at 95% CL for ma < 0.02 eV/c2. Ongoing measurements, with the magnet bores filled with a buffer gas (3He), are improving the sensitivity of the experiment for higher axion masses towards 1 eV/c2. Recent results, new ideas for Axion-Like Particle (WISPs) searches with CAST in the near future and the prospects of a new generation Helioscope are presented here
Synthesis and characterization of Fe3O4@Cs@Ag nanocomposite and its use in the production of magnetic and antibacterial nanofibrous membranes
Electrospinning is a promising technique to produce polymeric as well as metal oxide nanofibers in diverse domains. In this work, different weight ratios (5%, 7.5% and 10%) of Fe3O4@Cs@Ag magnetic nanoparticles were added in PVP (polyvinylpyrrolidone) polymer and fabricated via electrospinning method to produce magnetic nanofibers (MNFs). Structural, magnetic, morphological, spectroscopic and thermal properties of produced nanofibers were characterized. Furtheremore, antibacterial effects of Fe3O4@Cs@Ag nanofibrous membrane was investigated. Obtained SEM images showed that produced nanofibers were uniform and defect free. Moreover, crystallinity and magnetic moment of fibers was tested by using X-ray diffraction and a vibrating sample magnetometer. The results showed that produced nanofibrous membranes exhibited good antibacterial activity versus Staphylococcus aureus, Bacillus subtilis, Enterococcus faecalis, Escherichia coli, Proteus mirabilis and Pseudomonas aeruginosa. © 2020National Science Foundation, NSF; Directorate for Mathematical and Physical Sciences, MPS: 1726617This work was supported in part by Scientific Research Unit of Nam?k Kemal University within NKUBAP.06.GA.19.195 coded project. Magnetic Characterization at Virginia Commonwealth University was partially supported by National Science Foundation, Award Number: 1726617.This work was supported in part by Scientific Research Unit of Namık Kemal University within NKUBAP.06.GA.19.195 coded project. Magnetic Characterization at Virginia Commonwealth University was partially supported by National Science Foundation , Award Number: 1726617
The abundance of C18O and HDO in the envelope and hot core of the intermediate mass protostar NGC 7129 FIRS 2
NGC 7129 FIRS 2 is a young intermediate-mass (IM) protostar, which is
associated with two energetic bipolar outflows and displays clear signs of the
presence of a hot core. It has been extensively observed with ground based
telescopes and within the WISH Guaranteed Time Herschel Key Program. We present
new observations of the C18O 3-2 and the HDO 3_{12}-2_{21} lines towards NGC
7129 FIRS 2. Combining these observations with Herschel data and modeling their
emissions, we constrain the C18O and HDO abundance profiles across the
protostellar envelope. In particular, we derive the abundance of C18O and HDO
in the hot core. The intensities of the C18O lines are well reproduced assuming
that the C18O abundance decreases through the protostellar envelope from the
outer edge towards the centre until the point where the gas and dust reach the
CO evaporation temperature (~20-25 K) where the C18O is released back to the
gas phase. Once the C18O is released to the gas phase, the modelled C18O
abundance is found to be ~1.6x10^{-8}, which is a factor of 10 lower than the
reference abundance. This result is supported by the non-detection of C18O 9-8,
which proves that even in the hot core (T_k>100 K) the CO abundance must be 10
times lower than the reference value. Several scenarios are discussed to
explain this C18O deficiency. One possible explanation is that during the
pre-stellar and protostellar phase, the CO is removed from the grain mantles by
reactions to form more complex molecules. Our HDO modeling shows that the
emission of HDO 3_{12}-2_{21} line is maser and comes from the hot core
(T_k>100 K). Assuming the physical structure derived by Crimier et al. (2010),
we determine a HDO abundance of ~0.4 - 1x10^{-7} in the hot core of this IM
protostar, similar to that found in the hot corinos NGC 1333 IRAS 2A and IRAS
16293-2422.Comment: 10 pages, 7 figure
Uncertainties in models of stellar structure and evolution
Numerous physical aspects of stellar physics have been presented in Ses- sion
2 and the underlying uncertainties have been tentatively assessed. We try here
to highlight some specific points raised after the talks and during the general
discus- sion at the end of the session and eventually at the end of the
workshop. A table of model uncertainties is then drawn with the help of the
participants in order to give the state of the art in stellar modeling
uncertainties as of July 2013.Comment: Proc. of the workshop "Asteroseismology of stellar populations in the
Milky Way" (Sesto, 22-26 July 2013), Astrophysics and Space Science
Proceedings, (eds. A. Miglio, L. Girardi, P. Eggenberger, J. Montalban
The massive protostar W43-MM1 as seen by Herschel-HIFI water spectra: high turbulence and accretion luminosity
We present Herschel/HIFI observations of fourteen water lines in W43-MM1, a
massive protostellar object in the luminous star cluster-forming region W43. We
analyze the gas dynamics from the line profiles using Herschel-HIFI
observations (WISH-KP) of fourteen far-IR water lines (H2O, H217O, H218O),
CS(11-10), and C18O(9-8) lines, and using our modeling of the continuum
spectral energy distribution. As for lower mass protostellar objects, the
molecular line profiles are a mix of emission and absorption, and can be
decomposed into 'medium', and 'broad' velocity components. The broad component
is the outflow associated with protostars of all masses. Our modeling shows
that the remainder of the water profiles can be well fitted by an infalling and
passively heated envelope, with highly supersonic turbulence varying from 2.2
km/s in the inner region to 3.5 km/s in the outer envelope. Also, W43-MM1 has a
high accretion rate, between 4.0 x 10^{-4} and 4.0 x 10^{-2} \msun /yr, derived
from the fast (0.4-2.9 km/s) infall observed. We estimate a lower mass limit of
gaseous water of 0.11 \msun and total water luminosity of 1.5 \lsun (in the 14
lines presented here). The central hot core is detected with a water abundance
of 1.4 x 10^{-4} while the water abundance for the outer envelope is 8
x10^{-8}. The latter value is higher than in other sources, most likely related
to the high turbulence and the micro-shocks created by its dissipation.
Examining water lines of various energies, we find that the turbulent velocity
increases with the distance to the center. While not in clear disagreement with
the competitive accretion scenario, this behavior is predicted by the turbulent
core model. Moreover, the estimated accretion rate is high enough to overcome
the expected radiation pressure.Comment: Accepted in A&A on April 2, 2012. 12 pages 7 figure
- …