102 research outputs found
Basin-scale water system operations with uncertain future climate conditions: Methodology and case studies
The old and useful paradigm used by water resource engineers, that hydrology in a given place is stationary, and hence it is sufficient to look into the past to plan for the future, does not hold anymore, according to climate change projections. This becomes especially true in snow-dominated regions like California, where not only the magnitude but also the timing of streamflow could be affected by changes in precipitation and temperature. To plan and operate water resources systems at the basin scale, it is necessary to develop new tools that are suited for this nonstationary world. In this paper we develop an optimization algorithm that can be used for different studies related to climate change and water resources management. Three applications of this algorithm are developed for the Merced River basin. The first of these gives an assessment of the climate change effects on the operations of this basin considering an adaptive management strategy embedded in the optimization algorithm. In a second application we explore different long-term adaptation strategies intended to mitigate the effects of climate change. A final application is developed to determine how beneficial it is to build a new reservoir considering explicitly the uncertainty about future climate projections
Adaptation strategy to mitigate the impact of climate change on water resources in arid and semi-arid regions : a case study
Climate change and drought phenomena impacts have become a growing concern for water resources engineers and policy makers, mainly in arid and semi-arid areas. This study aims to contribute to the development of a decision support tool to prepare water resources managers and planners for climate change adaptation. The Hydrologiska Byråns Vattenbalansavdelning (The Water Balance Department of the Hydrological Bureau) hydrologic model was used to define the boundary conditions for the reservoir capacity yield model comprising daily reservoir inflow from a representative example watershed with the size of 14,924 km2 into a reservoir with the capacity of 6.80 Gm3. The reservoir capacity yield model was used to simulate variability in climate change-induced differences in reservoir capacity needs and performance (operational probability of failure, resilience, and vulnerability). Owing to the future precipitation reduction and potential evapotranspiration increase during the worst case scenario (−40% precipitation and +30% potential evapotranspiration), substantial reductions in streamflow of between −56% and −58% are anticipated for the dry and wet seasons, respectively. Furthermore, model simulations recommend that as a result of future climatic conditions, the reservoir operational probability of failure would generally increase due to declined reservoir inflow. The study developed preparedness plans to combat the consequences of climate change and drought
Relative magnitudes of sources of uncertainty in assessing climate change impacts on water supply security for the southern Adelaide water supply system
The sources of uncertainty in projecting the impacts of climate change on runoff are increasingly well recognized; however, translating these uncertainties to urban water security has received less attention in the literature. Furthermore, runoff cannot be used as a surrogate for water supply security when studying the impacts of climate change due to the nonlinear transformations in modeling water supply and the effects of additional uncertainties, such as demand. Consequently, this study presents a scenario-based sensitivity analysis to qualitatively rank the relative contributions of major sources of uncertainty in projecting the impacts of climate change on water supply security through time. This can then be used by water authorities to guide water planning and management decisions. The southern system of Adelaide, South Australia, is used to illustrate the methodology for which water supply system reliability is examined across six greenhouse gas (GHG) emissions scenarios, seven general circulation models, six demand projections, and 1000 stochastic rainfall time series. Results indicate the order of the relative contributions of uncertainty changes through time; however, demand is always the greatest source of uncertainty and GHG emissions scenarios the least. In general, reliability decreases over the planning horizon, illustrating the need for additional water sources or demand mitigation, while increasing uncertainty with time suggests flexible management is required to ensure future supply security with minimum regret.F.L. Paton, H.R. Maier and G.C. Dand
Therapeutic Effect of a Poly(ADP-Ribose) Polymerase-1 Inhibitor on Experimental Arthritis by Downregulating Inflammation and Th1 Response
Poly(ADP-ribose) polymerase-1 (PARP-1) synthesizes and transfers ADP ribose polymers to target proteins, and regulates DNA repair and genomic integrity maintenance. PARP-1 also plays a crucial role in the progression of the inflammatory response, and its inhibition confers protection in several models of inflammatory disorders. Here, we investigate the impact of a selective PARP-1 inhibitor in experimental arthritis. PARP-1 inhibition with 5-aminoisoquinolinone (AIQ) significantly reduces incidence and severity of established collagen-induced arthritis, completely abrogating joint swelling and destruction of cartilage and bone. The therapeutic effect of AIQ is associated with a striking reduction of the two deleterious components of the disease, i.e. the Th1-driven autoimmune and inflammatory responses. AIQ downregulates the production of various inflammatory cytokines and chemokines, decreases the antigen-specific Th1-cell expansion, and induces the production of the anti-inflammatory cytokine IL-10. Our results provide evidence of the contribution of PARP-1 to the progression of arthritis and identify this protein as a potential therapeutic target for the treatment of rheumatoid arthritis
The comparative responsiveness of Hospital Universitario Princesa Index and other composite indices for assessing rheumatoid arthritis activity
Objective
To evaluate the responsiveness in terms of correlation of the Hospital Universitario La Princesa Index (HUPI) comparatively to the traditional composite indices used to assess disease activity in rheumatoid arthritis (RA), and to compare the performance of HUPI-based response criteria with that of the EULAR response criteria.
Methods
Secondary data analysis from the following studies: ACT-RAY (clinical trial), PROAR (early RA cohort) and EMECAR (pre-biologic era long term RA cohort). Responsiveness was evaluated by: 1) comparing change from baseline (Delta) of HUPI with Delta in other scores by calculating correlation coefficients; 2) calculating standardised effect sizes. The accuracy of response by HUPI and by EULAR criteria was analyzed using linear regressions in which the dependent variable was change in global assessment by physician (Delta GDA-Phy).
Results
Delta HUPI correlation with change in all other indices ranged from 0.387 to 0.791); HUPI's standardized effect size was larger than those from the other indices in each database used. In ACT-RAY, depending on visit, between 65 and 80% of patients were equally classified by HUPI and EULAR response criteria. However, HUPI criteria were slightly more stringent, with higher percentage of patients classified as non-responder, especially at early visits. HUPI response criteria showed a slightly higher accuracy than EULAR response criteria when using Delta GDA-Phy as gold standard.
Conclusion
HUPI shows good responsiveness in terms of correlation in each studied scenario (clinical trial, early RA cohort, and established RA cohort). Response criteria by HUPI seem more stringent than EULAR''s
Demographic, clinical and antibody characteristics of patients with digital ulcers in systemic sclerosis: data from the DUO Registry
OBJECTIVES: The Digital Ulcers Outcome (DUO) Registry was designed to describe the clinical and antibody characteristics, disease course and outcomes of patients with digital ulcers associated with systemic sclerosis (SSc).
METHODS: The DUO Registry is a European, prospective, multicentre, observational, registry of SSc patients with ongoing digital ulcer disease, irrespective of treatment regimen. Data collected included demographics, SSc duration, SSc subset, internal organ manifestations, autoantibodies, previous and ongoing interventions and complications related to digital ulcers.
RESULTS: Up to 19 November 2010 a total of 2439 patients had enrolled into the registry. Most were classified as either limited cutaneous SSc (lcSSc; 52.2%) or diffuse cutaneous SSc (dcSSc; 36.9%). Digital ulcers developed earlier in patients with dcSSc compared with lcSSc. Almost all patients (95.7%) tested positive for antinuclear antibodies, 45.2% for anti-scleroderma-70 and 43.6% for anticentromere antibodies (ACA). The first digital ulcer in the anti-scleroderma-70-positive patient cohort occurred approximately 5 years earlier than the ACA-positive patient group.
CONCLUSIONS: This study provides data from a large cohort of SSc patients with a history of digital ulcers. The early occurrence and high frequency of digital ulcer complications are especially seen in patients with dcSSc and/or anti-scleroderma-70 antibodies
Vicuña et al., 2023, iScience
R codes used in Vicuña et al., 2023, iScience: "New insights from GWAS on BMI-related growth traits in a longitudinal cohort of admixed children with Native American and European ancestry". If you use any of these scripts, please cite the original article
Vicuña et al., 2023, iScience
R codes used in Vicuña et al., 2023, iScience: "New insights from GWAS on BMI-related growth traits in a longitudinal cohort of admixed children with Native American and European ancestry".THIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV
- …