166 research outputs found
Water use efficiency and yield of winter wheat under different irrigation regimes in a semi-arid region
In irrigation schemes under rotational water supply in semi-arid region, the water allocation and irrigation scheduling are often based on a fixed-area proportionate water depth with every irrigation cycle irrespective of crops and their growth stages, for an equitable water supply. An experiment was conducted during the 2004- 2005 season in Haouz irrigated area in Morocco, which objective was 1) to evaluate the effects of the surface irrigation scheduling method (ex-isting rule) adopted by the irrigation agency on winter wheat production compared to a full ir-rigation method and 2) to evaluate drip irrigation versus surface irrigation impacts on water sav-ing and yield of winter wheat. The methodology was based on the FAO-56 dual approach for the surface irrigation scheduling. Ground measure- ments of the Normalized Difference Vegetation Index (NDVI) were used to derive the basal crop coefficient and the vegetation fraction cover. The simple FAO-56 approach was used for drip irrigation scheduling. For surface irrigation, the existing rule approach resulted in yield and WUE reductions of 22% and 15%, respectively, compared with the optimized irrigation sched-uling proposed by the FAO-56 for full irrigation treatment. This revealed the negative effects of the irrigation schedules adopted in irrigation schemes under rotational water supply on crops productivity. It was also demonstrated that drip irrigation applied to wheat was more efficient with 20% of water saving in comparison with surface irrigation (full irrigation treatment). Drip irrigation gives also higher wheat yield com-pared to surface irrigation (+28% and +52% for full irrigation and existing rule treatments re-spectively). The same improvement was ob-served for water use efficiency (+24% and +59% respectively)
Rapid Accumulation of CD14+CD11c+ Dendritic Cells in Gut Mucosa of Celiac Disease after in vivo Gluten Challenge
Of antigen-presenting cells (APCs) expressing HLA-DQ molecules in the celiac disease (CD) lesion, CD11c(+) dendritic cells (DCs) co-expressing the monocyte marker CD14 are increased, whereas other DC subsets (CD1c(+) or CD103(+)) and CD163(+)CD11c(-) macrophages are all decreased. It is unclear whether these changes result from chronic inflammation or whether they represent early events in the gluten response. We have addressed this in a model of in vivo gluten challenge.Treated HLA-DQ2(+) CD patients (n = 12) and HLA-DQ2(+) gluten-sensitive control subjects (n = 12) on a gluten-free diet (GFD) were orally challenged with gluten for three days. Duodenal biopsies obtained before and after gluten challenge were subjected to immunohistochemistry. Single cell digests of duodenal biopsies from healthy controls (n = 4), treated CD (n = 3) and untreated CD (n = 3) patients were analyzed by flow cytometry.In treated CD patients, the gluten challenge increased the density of CD14(+)CD11c(+) DCs, whereas the density of CD103(+)CD11c(+) DCs and CD163(+)CD11c(-) macrophages decreased, and the density of CD1c(+)CD11c(+) DCs remained unchanged. Most CD14(+)CD11c(+) DCs co-expressed CCR2. The density of neutrophils also increased in the challenged mucosa, but in most patients no architectural changes or increase of CD3(+) intraepithelial lymphocytes (IELs) were found. In control tissue no significant changes were observed.Rapid accumulation of CD14(+)CD11c(+) DCs is specific to CD and precedes changes in mucosal architecture, indicating that this DC subset may be directly involved in the immunopathology of the disease. The expression of CCR2 and CD14 on the accumulating CD11c(+) DCs indicates that these cells are newly recruited monocytes
Conditionally Replicating Adenovirus Expressing TIMP2 Increases Survival in a Mouse Model of Disseminated Ovarian Cancer
Ovarian cancer remains difficult to treat mainly due to presentation of the disease at an advanced stage. Conditionally-replicating adenoviruses (CRAds) are promising anti-cancer agents that selectively kill the tumor cells. The present study evaluated the efficacy of a novel CRAd (Ad5/3-CXCR4-TIMP2) containing the CXCR4 promoter for selective viral replication in cancer cells together with TIMP2 as a therapeutic transgene, targeting the matrix metalloproteases (MMPs) in a murine orthotopic model of disseminated ovarian cancer. An orthotopic model of ovarian cancer was established in athymic nude mice by intraperitonal injection of the human ovarian cancer cell line, SKOV3-Luc, expressing luciferase. Upon confirmation of peritoneal dissemination of the cells by non-invasive imaging, mice were randomly divided into four treatment groups: PBS, Ad-ΔE1-TIMP2, Ad5/3-CXCR4, and Ad5/3-CXCR4-TIMP2. All mice were imaged weekly to monitor tumor growth and were sacrificed upon reaching any of the predefined endpoints, including high tumor burden and significant weight loss along with clinical evidence of pain and distress. Survival analysis was performed using the Log-rank test. The median survival for the PBS cohort was 33 days; for Ad-ΔE1-TIMP2, 39 days; for Ad5/3-CXCR4, 52.5 days; and for Ad5/3-CXCR4-TIMP2, 63 days. The TIMP2-armed CRAd delayed tumor growth and significantly increased survival when compared to the unarmed CRAd. This therapeutic effect was confirmed to be mediated through inhibition of MMP9. Results of the in vivo study support the translational potential of Ad5/3-CXCR4-TIMP2 for treatment of human patients with advanced ovarian cancer
Magnetotransport of CeRhIn5
We report measurements of the temperature-dependent anisotropic resistivity
and in-plane magnetoresistance on single crystals of the tetragonal
heavy-fermion antiferromagnet (TN = 3.8 K) CeRhIn5. The measurements are
reported in the temperature range 1.4 K to 300 K and in magnetic fields to 18
tesla. The resistivity is moderately anisotropic, with a room-temperature
c-axis to in-plane resistivity ratio rho_c/rho_a(300 K) = 1.7. rho(T)
measurements on the non-magnetic analog LaRhIn5 indicate that the anisotropy in
the CeRhIn5 resistivity stems predominately from anisotropy in Kondo-derived
magnetic scattering. In the magnetically ordered regime an applied field H
reduces TN only slightly due to the small ordered moment (0.37mu_B) and
magnetic anisotropy. The magnetoresistance (MR) below TN is positive and varies
linearly with H. In the paramagnetic state a positive MR is present below 7.5
K, while a high-field negative contribution is evident at higher temperatures.
The positive contribution decreases in magnitude with increasing temperature.
Above 40 K the positive contribution is no longer observable, and the MR is
negative. The low-T positive MR results from interactions with the
Kondo-coherent state, while the high-T negative MR stems from single-impurity
effects. The H and T-dependent magnetotransport reflects the magnetic
anisotropy and Kondo interactions at play in CeRhIn5.Comment: submitted to Physical Review
Leaf water potential and sap flow as indicators of water stress in Crimson ‘seedless’ grapevines under different irrigation strategies
Vitis vinifera L. cv. Crimson Seedless is a late season red table grape developed in 1989, with a high market value and increasingly cultivated under protected environments to extend the availability of seedless table grapes into the late fall. The purpose of this work was to evaluate leaf water potential and sap flow as indicators of water stress in Crimson Seedless vines under standard and reduced irrigation strategy, consisting of 70 % of the standard irrigation depth. Additionally, two sub-treatments were applied, consisting of normal irrigation throughout the growing season and a short irrigation induced stress period between veraison and harvest. Leaf water potential measurements coherently signaled crop-available water variations caused by different irrigation treatments, suggesting that this plant-based method can be reliably used to identify water-stress conditions. The use of sap flow density data to establish a ratio based on a reference ‘well irrigated vine’ and less irrigated vines can potentially be used to signal differences in the transpiration rates, which may be suitable for improving irrigation management strategies while preventing undesirable levels of water stress. Although all four irrigation strategies resulted in the production of quality table grapes, significant differences (p ≤ 0.05) were found in both berry weight and sugar content between the standard irrigation and reduced irrigation treatments. Reduced irrigation increased slightly the average berry size as well as sugar content and technical maturity index. The 2-week irrigation stress period had a negative effect on these parameters
Combinatory cytotoxic effects produced by E1B-55kDa-deleted adenoviruses and chemotherapeutic agents are dependent on the agents in esophageal carcinoma
We examined possible combinatory antitumor effects of replication-competent type 5 adenoviruses (Ad) lacking E1B-55kDa molecules (Ad-delE1B55) and chemotherapeutic agents in nine human esophageal carcinoma cells. Ad-delE1B55 produced cytotoxic effects on all the carcinoma cells and the cytotoxicity is not directly linked with the p53 status of the tumors or with the infectivity to respective tumors. A combinatory treatment with Ad-delE1B55 and an anticancer agent, 5-fluorouracil (5-FU), mitomycin C or etoposide, produced greater cytotoxic effects than that with either the Ad or the agent. Administration of 5-FU could minimally inhibit the viral replication and a simultaneous treatment with the Ad and 5-FU achieved better cytotoxicity than sequential treatments. We also confirmed the antitumor effects by the combination of Ad-delE1B55 with 5-FU in vivo. Cisplatin, however, did not achieve the combinatory effects in most of the cells tested. These data indicate that the Ad-delE1B55 produce combinatory antitumor effects with a chemotherapeutic agent irrespective of the administration schedule, but the effects depend on an agent in esophageal carcinoma
Parallels between Pathogens and Gluten Peptides in Celiac Sprue
Pathogens are exogenous agents capable of causing disease in susceptible organisms. In celiac sprue, a disease triggered by partially hydrolyzed gluten peptides in the small intestine, the offending immunotoxins cannot replicate, but otherwise have many hallmarks of classical pathogens. First, dietary gluten and its peptide metabolites are ubiquitous components of the modern diet, yet only a small, genetically susceptible fraction of the human population contracts celiac sprue. Second, immunotoxic gluten peptides have certain unusual structural features that allow them to survive the harsh proteolytic conditions of the gastrointestinal tract and thereby interact extensively with the mucosal lining of the small intestine. Third, they invade across epithelial barriers intact to access the underlying gut-associated lymphoid tissue. Fourth, they possess recognition sequences for selective modification by an endogenous enzyme, transglutaminase 2, allowing for in situ activation to a more immunotoxic form via host subversion. Fifth, they precipitate a T cell–mediated immune reaction comprising both innate and adaptive responses that causes chronic inflammation of the small intestine. Sixth, complete elimination of immunotoxic gluten peptides from the celiac diet results in remission, whereas reintroduction of gluten in the diet causes relapse. Therefore, in analogy with antibiotics, orally administered proteases that reduce the host's exposure to the immunotoxin by accelerating gluten peptide destruction have considerable therapeutic potential. Last but not least, notwithstanding the power of in vitro methods to reconstitute the essence of the immune response to gluten in a celiac patient, animal models for the disease, while elusive, are likely to yield fundamentally new systems-level insights
Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data
ReviewThe current study aims at reviewing and providing advances on methods for estimating and applying crop coefficients
from observations of ground cover and vegetation height. The review first focuses on the relationships between single
Kc and basal Kcb and various parameters including the fraction of ground covered by the canopy (fc), the leaf area index
(LAI), the fraction of ground shaded by the canopy (fshad), the fraction of intercepted light (flight) and intercepted
photosynthetic active radiation (fIPAR). These relationships were first studied in the 1970’s, for annual crops, and later,
in the last decennia, for tree and vine perennials. Research has now provided a variety of methods to observe and
measure fc and height (h) using both ground and remote sensing tools, which has favored the further development of Kc
related functions. In the past, these relationships were not used predictively but to support the understanding of
dynamics of Kc and Kcb in relation to the processes of evapotranspiration or transpiration, inclusive of the role of soil
evaporation. Later, the approach proposed by Allen and Pereira (2009), the A&P approach, used fc and height (h) or LAI
data to define a crop density coefficient that was used to directly estimate Kc and Kcb values for a variety of annual and
perennial crops in both research and practice. It is opportune to review the A&P method in the context of a variety of
studies that have derived Kc and Kcb values from field measured data with simultaneously observed ground cover fc and
height. Applications used to test the approach include various tree and vine crops (olive, pear, and lemon orchards and
vineyards), vegetable crops (pea, onion and tomato crops), field crops (barley, wheat, maize, sunflower, canola, cotton
and soybean crops), as well as a grassland and a Bermudagrass pasture. Comparisons of Kcb values computed with the A
&P method produced regression coefficients close to 1.0 and coefficients of determination≥0.90, except for orchards.
Results indicate that the A&P approach can produce estimates of potential Kcb, using vegetation characteristics alone,
within reasonable or acceptable error, and are useful for refining Kcb for conditions of plant spacing, size and density
that differ from standard values. The comparisons provide parameters appropriate to applications for the tested crops.
In addition, the A&P approach was applied with remotely sensed fc data for a variety of crops in California using the
Satellite Irrigation Management Support (SIMS) framework. Daily SIMS crop ET (ETc-SIMS) produced Kcb values using
the FAO56 and A&P approaches. Combination of satellite derived fc and Kcb values with ETo data from Spatial CIMIS
(California Irrigation Management Information System) produced ET estimates that were compared with daily actual
crop ET derived from energy balance calculations from micrometeorological instrumentation (ETc EB).Results produced
coefficients of regression of 1.05 for field crops and 1.08 for woody crops, and R2 values of 0.81 and 0.91, respectively.
These values suggest that daily ETc-SIMS -based ET can be accurately estimated within reasonable error and that the A&P
approach is appropriate to support that estimation. It is likely that accuracy can be improved via progress in remote
sensing determination of fc. Tabulated Kcb results and calculation parameters are presented in a companion paper in this
Special Issueinfo:eu-repo/semantics/publishedVersio
Biomarkers in T cell therapy clinical trials
T cell therapy represents an emerging and promising modality for the treatment of both infectious disease and cancer. Data from recent clinical trials have highlighted the potential for this therapeutic modality to effect potent anti-tumor activity. Biomarkers, operationally defined as biological parameters measured from patients that provide information about treatment impact, play a central role in the development of novel therapeutic agents. In the absence of information about primary clinical endpoints, biomarkers can provide critical insights that allow investigators to guide the clinical development of the candidate product. In the context of cell therapy trials, the definition of biomarkers can be extended to include a description of parameters of the cell product that are important for product bioactivity
- …