54 research outputs found
A genome-wide association meta-analysis on lipoprotein (a) concentrations adjusted for apolipoprotein (a) isoforms.
High lipoprotein (a) [Lp(a)] concentrations are an independent risk factor for cardiovascular outcomes. Concentrations are strongly influenced by apo(a) kringle IV repeat isoforms. We aimed to identify genetic loci associated with Lp(a) concentrations using data from five genome-wide association studies (n = 13,781). We identified 48 independent SNPs in the <i>LPA</i> and 1 SNP in the <i>APOE</i> gene region to be significantly associated with Lp(a) concentrations. We also adjusted for apo(a) isoforms to identify loci affecting Lp(a) levels independently from them, which resulted in 31 SNPs (30 in the <i>LPA</i> , 1 in the <i>APOE</i> gene region). Seven SNPs showed a genome-wide significant association with coronary artery disease (CAD) risk. A rare SNP (rs186696265; MAF âŒ1%) showed the highest effect on Lp(a) and was also associated with increased risk of CAD (odds ratio = 1.73, <i>P</i> = 3.35 Ă 10 <sup>-30</sup> ). Median Lp(a) values increased from 2.1 to 91.1 mg/dl with increasing number of Lp(a)-increasing alleles. We found the <i>APOE2</i> -determining allele of rs7412 to be significantly associated with Lp(a) concentrations ( <i>P</i> = 3.47 Ă 10 <sup>-10</sup> ). Each <i>APOE2</i> allele decreased Lp(a) by 3.34 mg/dl corresponding to âŒ15% of the population's mean values. Performing a gene-based test of association, including suspected Lp(a) receptors and regulators, resulted in one significant association of the <i>TLR2</i> gene with Lp(a) ( <i>P</i> = 3.4 Ă 10 <sup>-4</sup> ). In summary, we identified a large number of independent SNPs in the <i>LPA</i> gene region, as well as the <i>APOE2</i> allele, to be significantly associated with Lp(a) concentrations
Polymorphisms in the gene regions of the adaptor complex LAMTOR2/LAMTOR3 and their association with breast cancer risk.
Background: The late endosomal LAMTOR complex serves as a convergence point for both the RAF/MEK/ERK and the PI3K/AKT/mTOR pathways. Interestingly, both of these signalling cascades play a significant role in the aetiology of breast cancer. Our aim was to address the possible role of genetic polymorphisms in LAMTOR2 and LAMTOR3 as genetic risk factors for breast cancer. Methodology/Results: We sequenced the exons and exon-intron boundaries of LAMTOR2 (p14) and LAMTOR3 (MP1) in 50 prospectively collected pairs of cancerous tissue and blood samples from breast cancer patients and compared their genetic variability. We found one single nucleotide polymorphism (SNP) in LAMTOR2 (rs7541) and two SNPs in LAMTOR3 (rs2298735 and rs148972953) in both tumour and blood samples, but no somatic mutations in cancerous tissues. In addition, we genotyped all three SNPs in 296 samples from the Risk Prediction of Breast Cancer Metastasis Study and found evidence of a genetic association between rs148972953 and oestrogen (ER) and progesterone receptor negative status (PR) (ER: OR = 3.60 (1.15-11.28); PR: OR = 4.27 (1.43-12.72)). However, when we additionally genotyped rs148972953 in the MARIE study including 2,715 breast cancer cases and 5,216 controls, we observed neither a difference in genotype frequencies between patients and controls nor was the SNP associated with ER or PR. Finally, all three SNPs were equally frequent in breast cancer samples and female participants (n = 640) of the population-based SAPHIR Study. Conclusions: The identified polymorphisms in LAMTOR2 and LAMTOR3 do not seem to play a relevant role in breast cancer. Our work does not exclude a role of other not yet identified SNPs or that the here annotated polymorphism may in fact play a relevant role in other diseases. Our results underscore the importance of replication in association studies
A genome-wide association meta-analysis on apolipoprotein A-IV concentrations.
Apolipoprotein A-IV (apoA-IV) is a major component of HDL and chylomicron particles and is involved in reverse cholesterol transport. It is an early marker of impaired renal function. We aimed to identify genetic loci associated with apoA-IV concentrations and to investigate relationships with known susceptibility loci for kidney function and lipids. A genome-wide association meta-analysis on apoA-IV concentrations was conducted in five population-based cohorts (nâ=â13,813) followed by two additional replication studies (nâ=â2,267) including approximately 10 M SNPs. Three independent SNPs from two genomic regions were significantly associated with apoA-IV concentrations: rs1729407 near APOA4 (Pâ=â6.77âĂâ10â(-)â (44)), rs5104 in APOA4 (Pâ=â1.79âĂâ10(-)(24)) and rs4241819 in KLKB1 (Pâ=â5.6âĂâ10(-)(14)). Additionally, a look-up of the replicated SNPs in downloadable GWAS meta-analysis results was performed on kidney function (defined by eGFR), HDL-cholesterol and triglycerides. From these three SNPs mentioned above, only rs1729407 showed an association with HDL-cholesterol (Pâ=â7.1âĂâ10â(-)â (07)). Moreover, weighted SNP-scores were built involving known susceptibility loci for the aforementioned traits (53, 70 and 38 SNPs, respectively) and were associated with apoA-IV concentrations. This analysis revealed a significant and an inverse association for kidney function with apoA-IV concentrations (Pâ=â5.5âĂâ10(-)(05)). Furthermore, an increase of triglyceride-increasing alleles was found to decrease apoA-IV concentrations (Pâ=â0.0078). In summary, we identified two independent SNPs located in or next the APOA4 gene and one SNP in KLKB1 The association of KLKB1 with apoA-IV suggests an involvement of apoA-IV in renal metabolism and/or an interaction within HDL particles. Analyses of SNP-scores indicate potential causal effects of kidney function and by lesser extent triglycerides on apoA-IV concentrations
Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.
The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain âŒ8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD
Afamin predicts the prevalence and incidence of nonalcoholic fatty liver disease
ObjectivesIn the general population, increased afamin concentrations are associated with the prevalence and incidence of metabolic syndrome as well as type 2 diabetes. Although metabolic syndrome is commonly associated with nonalcoholic fatty liver disease (NAFLD), there exist no information on afamin and NAFLD.MethodsAfamin concentrations were cross-sectionally measured in 146 Austrian patients with NAFLD, in 45 patients without NAFLD, and in 292 age- and sex-matched healthy controls. Furthermore, the feasibility of afamin to predict incident NAFLD was evaluated in 1,434 adult participants in the population-based Cardiovascular Risk in Young Finns Study during a 10-year follow-up.ResultsMedian afamin concentrations were significantly higher in NAFLD patients (83.6 mg/L) than in patients without NAFLD (61.6 mg/L, pConclusionsAfamin concentrations are increased in patients with NAFLD and independently predict the development of NAFLD in a population-based cohort.</p
A genome-wide association meta-analysis on lipoprotein (a) concentrations adjusted for apolipoprotein (a) isoforms
High lipoprotein (a) [Lp(a)] concentrations are an independent risk factor for cardiovascular outcomes. Concentrations are strongly influenced by apo(a) kringle IV repeat isoforms. We aimed to identify genetic loci associated with Lp(a) concentrations using data from five genome- wide association studies (n = 13,781). We identified 48 independent SNPs in the LPA and 1 SNP in the APOE gene region to be significantly associated with Lp(a) concentrations. We also adjusted for apo(a) isoforms to identify loci affecting Lp(a) levels independently from them, which resulted in 31 SNPs (30 in the LPA, 1 in the APOE gene region). Seve
Mendelian Randomization Studies Do Not Support a Causal Role for Reduced Circulating Adiponectin Levels in Insulin Resistance and Type 2 Diabetes
Adiponectin is strongly inversely associated with insulin resistance and type 2 diabetes, but its causal role remains controversial. We used a Mendelian randomization approach to test the hypothesis that adiponectin causally influences insulin resistance and type 2 diabetes. We used genetic variants at the ADIPOQ gene as instruments to calculate a regression slope between adiponectin levels and metabolic traits (up to 31,000 individuals) and a combination of instrumental variables and summary statisticsâbased genetic risk scores to test the associations with gold-standard measures of insulin sensitivity (2,969 individuals) and type 2 diabetes (15,960 case subjects and 64,731 control subjects). In conventional regression analyses, a 1-SD decrease in adiponectin levels was correlated with a 0.31-SD (95% CI 0.26â0.35) increase in fasting insulin, a 0.34-SD (0.30â0.38) decrease in insulin sensitivity, and a type 2 diabetes odds ratio (OR) of 1.75 (1.47â2.13). The instrumental variable analysis revealed no evidence of a causal association between genetically lower circulating adiponectin and higher fasting insulin (0.02 SD; 95% CI â0.07 to 0.11; N = 29,771), nominal evidence of a causal relationship with lower insulin sensitivity (â0.20 SD; 95% CI â0.38 to â0.02; N = 1,860), and no evidence of a relationship with type 2 diabetes (OR 0.94; 95% CI 0.75â1.19; N = 2,777 case subjects and 13,011 control subjects). Using the ADIPOQ summary statistics genetic risk scores, we found no evidence of an association between adiponectin-lowering alleles and insulin sensitivity (effect per weighted adiponectin-lowering allele: â0.03 SD; 95% CI â0.07 to 0.01; N = 2,969) or type 2 diabetes (OR per weighted adiponectin-lowering allele: 0.99; 95% CI 0.95â1.04; 15,960 case subjects vs. 64,731 control subjects). These results do not provide any consistent evidence that interventions aimed at increasing adiponectin levels will improve insulin sensitivity or risk of type 2 diabetes
Plasma Concentrations of Afamin Are Associated With Prevalent and Incident Type 2 Diabetes: A Pooled Analysis in More Than 20,000 Individuals.
The human vitamin E-binding glycoprotein afamin is primarily expressed in the liver and has been associated with prevalent and incident metabolic syndrome. These data were in line with observations in transgenic mice. We thus investigated whether afamin concentrations are associated with prediabetes, type 2 diabetes, and insulin resistance (IR).
Individual-level baseline ( javax.xml.bind.JAXBElement@f254025 = 20,136) and follow-up data ( javax.xml.bind.JAXBElement@30ded076 = 14,017) of eight prospective cohort studies were investigated. Study-level data were combined using random-effects meta-analyses. Main outcomes were prevalent and incident type 2 diabetes, prediabetes, and IR. Discrimination and reclassification of participants was analyzed for incident type 2 diabetes.
Mean afamin concentrations between studies ranged from 61 to 73 mg/L. The eight studies included 1,398 prevalent and 585 incident cases of type 2 diabetes. Each increase of afamin by 10 mg/L was associated with prevalent type 2 diabetes (odds ratio [OR] 1.19 [95% CI 1.12-1.26], javax.xml.bind.JAXBElement@300447f6 = 5.96 Ă 10 javax.xml.bind.JAXBElement@7b7e80f0 ). Afamin was positively associated with IR assessed by HOMA-IR (ÎČ 0.110 [95% CI 0.089-0.132], javax.xml.bind.JAXBElement@5e7fd3d2 = 1.37 Ă 10 javax.xml.bind.JAXBElement@18e4f50b ). Most importantly, afamin measured at baseline was an independent predictor for 585 incident cases of type 2 diabetes (OR 1.30 [95% CI 1.23-1.38], javax.xml.bind.JAXBElement@a4d3a16 = 3.53 Ă 10 javax.xml.bind.JAXBElement@53b52af ) and showed a significant and valuable gain in risk classification accuracy when added to this extended adjustment model.
This pooled analysis in >20,000 individuals showed that afamin is strongly associated with IR, prevalence, and incidence of type 2 diabetes independent of major metabolic risk factors or parameters. Afamin might be a promising novel marker for the identification of individuals at high risk for the development of type 2 diabetes
Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.
Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 Ă 10(-8) to P = 2.3 Ă 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP
- âŠ