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Abstract 
Objective: The human vitamin E-binding glycoprotein afamin is primarily expressed 

in liver and has been associated with prevalent and incident metabolic syndrome. 

These data were in line with observations in transgenic mice. We thus investigated 

whether afamin concentrations are associated with prediabetes, type 2 diabetes, and 

insulin resistance. 

Research Design and Methods: Individual-level baseline (n=20,136) and follow-up 

data (n=14,017) of 8 prospective cohort studies were investigated. Study-level data 

were combined using random-effects meta-analyses. Main outcomes were prevalent 

and incident type 2 diabetes, prediabetes, and insulin resistance. Discrimination and 

reclassification of participants was analysed for incident type 2 diabetes. 

Results: Mean afamin concentrations between studies ranged from 61-73 mg/L. The 

eight studies included 1,398 prevalent and 585 incident cases of type 2 diabetes. 

Each increase of afamin by 10 mg/L was associated with prevalent type 2 diabetes: 

OR=1.19 (95%CI 1.12-1.26), p=5.96x10-8. Afamin was positively associated with 

insulin resistance assessed by HOMA-IR: ß=0.110 (95%CI 0.089-0.132), p=1.37x10-

23. Most importantly, afamin measured at baseline was an independent predictor for 

585 incident type 2 diabetes cases: OR=1.30 (95%CI 1.23-1.38), p=3.53x10-19 and 

showed a significant and valuable gain in risk classification accuracy when added to 

this extended adjustment model. 

Conclusions: This pooled analysis in more than 20,000 individuals showed that 

afamin is strongly associated with insulin resistance, prevalence and incidence of 

type 2 diabetes independent of major metabolic risk factors or parameters. Afamin 

might be a promising novel marker for the identification of individuals at high risk for 

the development of type 2 diabetes. 
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The worldwide number of adults with type 2 diabetes has quadrupled during the last 

35 years. In 2014, the age-standardized prevalence rate was 9.0% for men and 7.9% 

for women, and is predicted to increase to 12.8% and 10.8%, respectively, by 2025 

(1). Most importantly, about a third to a half of individuals with diabetes mellitus 

remains undiagnosed (2,3). Besides the enormous annual costs of 825 billion dollars 

worldwide, metabolic syndrome and diabetes mellitus increase subsequent non-fatal 

and fatal outcomes (2,4,5). More than 2 million deaths every year can be attributed to 

diabetes mellitus and its macrovascular and microvascular complications (1). Thus, 

an in-depth understanding of the pathogenesis as well as the identification of early 

risk predictors is of major importance. 

We recently demonstrated in a pooled analysis of three epidemiological studies 

including more than 5,000 study participants that plasma afamin concentrations are 

predictive not only for the prevalence but also for the incidence of metabolic 

syndrome (6). In patients with polycystic ovary syndrome afamin concentrations have 

been reported to be associated with insulin resistance (7), but data on the 

association between afamin and type 2 diabetes are still lacking. 

Afamin was first described in 1994 as the fourth member of the human albumin 

gene family including albumin, α-fetoprotein and vitamin D-binding protein (8,9). The 

human plasma glycoprotein afamin has a molecular mass of 87 kD with 15% 

carbohydrate content (10) and 55% amino acid sequence similarity to albumin (8). It 

is primarily expressed in the liver (8) but also in tissues such as brain, testes, ovaries 

and kidney (www.proteinatlas.org). Knowledge about the (patho-)physiological 

functions of this protein is still limited (11,12). Transgenic mice overexpressing the 

human afamin gene developed increased body weight and increased blood 

concentrations of lipids and glucose (6). Based on these findings and the 

epidemiological data on afamin and metabolic syndrome in humans (6), we aimed to 

investigate, whether afamin is associated with the prevalence and incidence of type 2 

diabetes in a pooled analysis in more than 20,000 individuals from mainly population-

based cohorts. Furthermore, we evaluated whether afamin is also related to 

prediabetes and type 2 diabetes-related phenotypes such as insulin resistance. 
  

http://www.proteinatlas.org/
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Research Design and Methods 
Study Populations and Study Design 

This investigation is based on eight prospective cohort studies, six of them were 

per definition population-based (Bruneck, KORA F3, KORA F4, CoLaus, YFS, and 

the NHLBI Family Heart Study), one study included unrelated healthy middle-aged 

men from nine general practices (NPHS-II), and one study was based on a healthy 

working population (SAPHIR). The baseline examination included a total of 20,136 

individuals and from 14,017 individuals a follow-up examination was available. The 

baseline examination finally included a total of 20,094 individuals for prevalent and 

the follow-up examination 13,347 individuals for incident type 2 diabetes, 

respectively. Percentage of loss to follow-up varied between 3% (NPHS-II) and 36% 

(NHLBI Family Heart Study). This frequency could not be calculated for the CoLaus 

Study since follow-up collection of data on incident diabetes is still work in progress. 

The average follow-up time in the eight studies ranged from 4.5 to 12.5 years 

(Supplementary Table 1). All studies were approved by the respective local ethics 

committees. Clinical investigations described were carried out according to the 

Declaration of Helsinki. All participants provided written informed consent. For more 

details on study design, recruitment, clinical assessment of laboratory parameters 

and definition of outcomes see Supplementary Material. 

Definition of outcomes 

Type 2 diabetes was defined either as self-reported, and/or as fasting glucose 

≥126 mg/dL, (≥7 mmol/L) according to the 1997 American Diabetes Association 

(ADA) criteria (13) and/or receiving anti-diabetic medication. Participants with 

diagnosis of type 1 diabetes were excluded. More details on the specific definitions in 

each study can be found in the Supplementary Material. 

Measures of insulin resistance such as homeostasis model assessment-

estimated insulin resistance (HOMA-IR) and whole-body insulin sensitivity index 

(ISI(composite)) were calculated as described in the Supplementary Material. 

Prediabetes was specified according to the 1997 ADA definition (impaired 

fasting glucose defined as fasting glucose of ≥100-125 mg/dL (≥5.6-6.9 mmol/L) and 

impaired glucose tolerance as 2-h glucose value between ≥140-199 mg/dL (≥7.8-

11.0 mmol/L)) (13).  
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Measurement of afamin plasma concentrations 

Afamin was quantified with a custom-made double-antibody sandwich ELISA as 

previously described (6,10,14,15). Within-run and between-run coefficients of 

variation were 3.3% and 6.2%, respectively (15). Afamin concentrations were 

measured in all studies in the laboratory at the Medical University of Innsbruck. 

Extended information on the quality control of lab work is given in the Supplementary 

Material. 

Statistical analyses in all cohorts 

At baseline, the association between afamin and prevalent type 2 diabetes was 

explored by logistic regression analysis. At the follow-up investigation, logistic 

regression modelling of the relation of afamin values measured at baseline with 

incident type 2 diabetes was performed and participants with type 2 diabetes at 

baseline were excluded. Because exact dates of diagnosis of type 2 diabetes were 

not known in all studies, logistic instead of Cox proportional hazard regression was 

used for investigating incident type 2 diabetes. Both prevalent and incident type 2 

diabetes were considered as primary outcomes. All further analysed outcomes 

(fasting insulin and glucose concentrations, glycated hemoglobin (HbA1c), HOMA-IR, 

whole-body ISI(composite) (in KORA F4 only)) were considered as secondary 

outcomes. For all analyses done, the first model was adjusted for age and sex and 

the second (referred to as extended adjustment model) additionally for other potential 

major metabolic risk factors or parameters (HDL cholesterol, triglycerides, BMI, 

hypertension and in 6 out of 8 studies glucose concentrations).  

The linearity of afamin on all outcomes was tested by a penalized, age- and 

sex-adjusted regression spline approach in the large population-based in-house 

KORA F4 Study that served as a reference for all other studies included in the pooled 

analyses. In addition, results for afamin divided into quartiles are shown for primary 

outcomes.  

Afamin concentrations are quite normally distributed (6). Whole-body 

ISI(composite), further continuous type 2 diabetes-related phenotypes (fasting insulin 

and glucose concentrations, HbA1c, HOMA-IR) and triglycerides were log-

transformed based on the natural logarithm (ln) due to their skewed distribution. 
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To test heterogeneity between study-specific beta estimates, I2 index as well as 

chi-square based Q-statistic was calculated for each outcome according to the age- 

and sex-adjusted model (16). Since there was an indication for heterogeneity for 

prevalent diabetes (one of the two main outcomes) (Supplementary Table 2), a 

pooled effect size for the respective studies was calculated using random effects 

meta-analysis according to (17).  

Further specific statistical analyses in the KORA F4 Study  

For the primary outcome incident diabetes, both a model additionally including 

glucose concentrations ≥100 mg/dL (100-125 mg/dL vs. <100 mg/dL=reference) 

beside major metabolic risk factors or parameters and a model considering glucose 

concentrations ≥100 mg/dL and family history of diabetes was calculated. This cut-off 

of ≥100 mg/dL for glucose concentrations was defined according to the 1997 ADA 

definition for impaired fasting glucose (IFG) (13). 

Family history of diabetes in KORA F4 included information about diabetes for 

all first grade relatives and took age of onset into account (18). Variable selection in 

both adjustment models was based on the Framingham Risk Score for type 2 

diabetes (19). Furthermore, logistic regression analyses were performed on the 

association of afamin with prediabetes and linear regression analyses on the 

association with whole-body ISI(composite). These latter analyses on whole-body 

ISI(composite) as well as linear regression models on further continuous type 2 

diabetes-related phenotypes described above (fasting insulin and glucose 

concentrations, glycated hemoglobin (HbA1c), HOMA-IR) were calculated excluding 

participants with prevalent type 2 diabetes at baseline. HOMA-IR and whole-body 

ISI(composite) were also analysed divided by a cut-off of 2.5.  

We considered incident type 2 diabetes as outcome also taking an oral glucose 

tolerance test (OGTT) into account and performed a test of deviances on nested 

models to assess whether afamin significantly added to the extended adjustment 

model. Whether afamin concentrations contributed to a better classification of 

individuals into predefined categories of incident type 2 diabetes risk in addition to a 

model already including major metabolic risk factors or parameters (age, sex, HDL 

cholesterol, triglycerides, BMI, hypertension and 1) fasting glucose concentrations 

≥100 mg/dL (100-125 mg/dL vs. <100 mg/dL=reference) or 2) fasting glucose 
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concentrations ≥100 mg/dL (100-125 mg/dL vs. <100 mg/dL=reference) and family 

history of diabetes was also evaluated. The categorical net reclassification 

improvement (NRI) was calculated using the reclass function in R based on the 

following risk categories (<5%, 5-24% and >=25%) for individuals who developed 

type 2 diabetes during a median follow-up of 6.4 years (n=132) and for those who did 

not receive a diagnosis of type 2 diabetes (n=1,718) as well as for the total group. 

Standard errors for categorical NRI were computed according to Pencina et al. (20). 

For comparison purposes the continuous NRI was also calculated (again for cases 

and controls as well as the total group) with the function improveProb in R. The 

continuous NRI has the advantage over the categorical NRI that it does not depend 

on the choice of specific risk categories, and any change in predicted risk in the 

correct direction is considered appropriate.  

For all analyses performed, a two-sided test P-value <0.05 was considered 

statistically significant. Analyses were performed using SPSS for Windows, version 

21.0 (IBM Corp., Armonk, New York, NY, USA) and R for Windows, version 3.1.3 

(Vienna, Austria). 
 

Results 
Baseline characteristics 

Baseline characteristics of all eight studies included in this pooled analysis are 

shown in Supplementary Table 1. Mean afamin concentrations were lowest in the 

Young Finns Study (61.4±15.4 mg/L), and highest in the CoLaus Study (73.1±16.6 

mg/L). Based on nonlinear P-splines there was no evident deviation from linearity of 

afamin in the applied regression models neither at baseline nor at follow-up in KORA 

F4 (Supplementary Figures 1 to 6). There was no effect of sex on associations of 

afamin with main outcomes (data not shown). 

Association between afamin concentrations and prevalent type 2 diabetes 

(primary outcome) 

The age- and sex-adjusted logistic regression analysis revealed an increased 

probability for prevalent type 2 diabetes per 10 mg/L increase in afamin 

concentrations (OR=1.40, 95%CI 1.31-1.48, p=2.54x10-27). The extended model was 

additionally adjusted for HDL cholesterol, triglycerides, BMI and hypertension and still 
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showed an OR=1.19, 95%CI 1.12-1.26, p=5.96x10-08 (Figure 1, panel A and 

Supplementary Table 3). When afamin was categorized in quartiles, the association 

reached statistical significance in the age- and sex-adjusted model when the third 

and the fourth quartile were compared to the first quartile (OR=1.74, 95%CI 1.38-

2.20, p=3.47x10-6 and OR=3.91, 95%CI 2.97-5.14, p=2.10x10-22, respectively). This 

association was still significant for the fourth quartile after extended adjustment 

(OR=1.72, 95%CI 1.27-2.33, p=5.09x10-4) (Figure 1, panel B, and Supplementary 

Table 4). In a sensitivity analysis we excluded the studies KORA-F3 and NPHSII 

from the pooled analysis since their participants were not necessarily fasting. This 

reduced heterogeneity, but led basically to the same results with slightly increased 

effect estimates. 

Association between afamin concentrations and incident type 2 diabetes 

(primary outcome) 

Afamin concentrations measured at baseline were also a significant predictor 

for the development of type 2 diabetes during follow-up. Each increase in afamin 

concentrations by 10 mg/L was significantly associated with a 49% higher odds for 

incident type 2 diabetes (OR=1.49, 95%CI 1.42-1.56, p=5.97x10-62) in the age- and 

sex-adjusted model and with a 30% higher odds in the extended adjustment model 

(OR=1.30, 95%CI 1.23-1.38, p=3.53x10-19) (Figure 2 panel A and Supplementary 

Table 3). When afamin concentrations were stratified in quartiles the association was 

most pronounced for the fourth quartile with an OR of 5.28 (95%CI 3.83-7.27, 

p=2.64x10-24) in the age- and sex-adjusted model and an OR of 2.33 (95%CI 1.61-

3.36, p=6.66x10-6) in the extended adjustment model. This association was already 

present but less pronounced in the third quartile (age- and sex-adjusted: OR=2.56, 

95%CI 1.88-3.49, p=2.25x10-9; extended adjustment model: OR=1.47, 95%CI 1.04-

2.08, p=0.03) (Figure 2 panel B and Supplementary Table 5). Again, excluding 

KORA-F3 and NPHSII revealed similar results with slightly increased effect 

estimates. 

Association between afamin concentrations and continuous type 2 diabetes-

related phenotypes (secondary outcomes) 

Further analyses on continuous type 2 diabetes-related phenotypes such as 

HbA1c, insulin, glucose and HOMA-IR were performed excluding all participants who 
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already had type 2 diabetes at baseline. Baseline afamin concentrations were 

positively associated with insulin concentrations and HOMA-IR in the age- and sex-

adjusted as well as in the extended adjustment model (Table 1 and Supplementary 

Table 6). An example of a forest plot is provided for HOMA-IR in Supplementary 

Figure 7. These associations were less pronounced but still statistically significant in 

both adjustment models for glucose and HbA1c as dependent variables (Table 1 and 

Supplementary Table 6). 
 

Extended analyses in the KORA F4 Study 

Association between afamin and prediabetes as well as insulin resistance 

Each increase of age- and sex-adjusted plasma afamin concentrations by 10 

mg/L increased the probability for prediabetes based on the 1997 ADA definition in 

2,635 KORA F4 individuals without type 2 diabetes at baseline: OR=1.41, 95%CI 

(1.33-1.49), p=1.66x10-29. The same was observed for the extended adjustment 

model: OR=1.21, 95%CI (1.14-1.30), p=8.62x10-09.  

Besides these findings afamin was inversely related to insulin resistance based 

on whole-body insulin sensitivity index (ISI(composite)) in both adjustment models in 

the KORA F4 Study (Table 1). When this insulin resistance measure was stratified by 

a cut-off of 2.5, each increase in afamin concentrations by 10 mg/L was associated 

with an increased probability for insulin resistance (OR=1.89, 95%CI 1.67-2.15, 

p=3.92x10-23). This association remained highly significant in the extended-

adjustment model (OR=1.77, 95%CI 1.54-2.03), p=6.94x10-16). The same association 

was found for HOMA-IR stratified by 2.5: each increase in afamin concentrations by 

10 mg/L was related to a higher probability for insulin resistance in the age- and sex-

adjusted model (OR=1.70, 95%CI 1.58-1.82, p=5.91x10-91) and extended adjustment 

model (OR=1.47, 95%CI 1.34-1.56, p=1.45x10-20), respectively. 

Association between afamin and incident type 2 diabetes based on variable 

selection according to the Framingham Risk Score for type 2 diabetes 

Further adjustment models on the development of type 2 diabetes were done. 

When fasting glucose concentrations ≥100 mg/dL (100-125 mg/dL vs. <100 

mg/dL=reference) were additionally included in the extended adjustment model, 

afamin concentrations measured at baseline were still a significant predictor for the 
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development of type 2 diabetes (OR=1.35, 95%CI 1.17-1.57, p=6.19x10-5). When all 

cohorts were taken into account where fasting plasma glucose concentrations were 

available, pooled effect estimates for afamin in these 6 studies did only marginally 

differ when compared to the single analysis in KORA F4 (with glucose concentrations 

as categorical variable (100-125 mg/dL vs. <100 mg/dL=reference) (OR=1.27, 95%CI 

1.18-1.36, p=5.09*10-10). Furthermore, when glucose concentrations were included in 

the model on a continuous scale, the effect estimate was almost unchanged 

(OR=1.21, 95%CI 1.11-1.30, p=2.87x10-6) (for more details see Supplementary 

Table 7). 

Even when besides glucose concentrations ≥100 mg/dL family history of 

diabetes was taken into account, each increase in afamin concentrations by 10 mg/L 

still showed a significantly higher probability for incident type 2 diabetes (OR=1.33, 

95%CI 1.13-1.56, p=0.001).  

Various further adjustment models for primary and secondary outcomes were 

done. No matter if we added either smoking, alcohol intake, physical activity, waist 

circumference (instead of BMI), family history of diabetes, fasting glucose 

concentrations, fasting insulin concentrations, or HOMA-IR (where appropriate) to the 

extended adjustment model, effect estimates of afamin remained highly significant 

(range of OR 1.20 to 1.43, all p values ≤0.001). Similar results were found for type 2 

diabetes-related phenotypes which did not show major changes in the beta estimates 

for all outcomes (data not shown). 

Afamin and type 2 diabetes risk discrimination and reclassification analysis  

To assess whether afamin contributes to a better discrimination between 

individuals who developed type 2 diabetes and those who remained free of type 2 

diabetes during the prospective follow-up in the KORA F4 Study, two statistical 

concepts were applied: 1) deviances and 2) categorical as well as continuous net 

reclassification index (NRI). For these analyses we applied a more accurate definition 

for incident type 2 diabetes available in KORA F4 further using an oral glucose 

tolerance test (OGTT) (according to the 1997 ADA criteria) (13).  The effect estimate 

of afamin did not change compared to the diabetes definition without OGTT as used 

in the pooled analysis according to the extended adjustment model (OR=1.48, 

95%CI 1.32-1.66, p= 5.96*10-11 vs. OR=1.40, 95%CI 1.23-1.60, p=5.49*10-7). The 

model including afamin (deviance= 694.69) showed a significantly improved model fit 
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compared to the extended risk model including glucose concentrations ≥100 mg/dL 

(100-125 mg/dL vs. <100 mg/dL=reference) (deviance= 726.90) (difference in 

deviance -32.21, p<0.0001). When besides glucose concentrations ≥100 mg/dL 

family history of diabetes was additionally included in the extended adjustment model 

(deviance= 602.71), the model also containing afamin (deviance= 577.07) still 

indicated a significantly improved model fit (difference in deviance -25.64, p<0.0001). 

Furthermore, the categorical NRI was applied to test whether inclusion of afamin into 

a model containing known metabolic risk factors or parameters significantly adds to 

type 2 diabetes risk reclassification. Based on predefined risk categories (<5%, 5-

24%, ≥25%), as shown in Table 2, NRI for cases was 0.114 (95%CI 0.031-0.221), 

p=0.002 and for controls 0.021 (95%CI 0.006-0.036), p=0.008. Overall NRI for the 

total group was 0.135 (95%CI 0.048-0.221, p=0.002). Of the 132 individuals who 

developed type 2 diabetes, 24 (18.2%) were correctly reclassified and thus moved to 

a higher risk category. Of those who remained free of type 2 diabetes (n=1,718), 110 

(6.4%) moved to a lower risk category and can be considered as correctly 

reclassified based on adding afamin to the risk model. In subjects at intermediate risk 

(5% to <24%), the addition of afamin to the risk model resulted in a correct 

reclassification of 17 cases (24.3%) and 84 controls (19.9%), respectively (Table 2 

and Supplementary Figure 8). Even when additionally adding family history of 

diabetes to the risk model, afamin still contributed to an improved type 2 diabetes risk 

reclassification (see Supplementary Table 8 and Supplementary Figure 9). Results 

based on continuous NRI showed a significant gain in classification accuracy when 

afamin was added to the risk model: NRI for cases 0.197 (95%CI: 0.030-0.364) 

p=0.02, and for controls 0.354 (95%CI 0.310-0.398) p<0.0001. Overall continuous 

NRI for the total group was 0.551 (95%CI: 0.378-0.724), p<0.0001. This means that 

in about three of five subjects the assignment to the case or control status has been 

enforced by adding afamin to the risk model. The same conclusion holds true when 

also family history of diabetes was included in the risk classification calculations 

because absolute NRI values did not change for NRI for the total group 0.491 

(95%CI: 0.298-0.685), p<0.0001 and NRI for controls 0.351 (95%CI: 0.305-0.398), 

p<0.0001, and were only slightly attenuated for NRI for cases 0.140 (95%CI: 0.047-

0.328), p=0.14).  
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Conclusions  
This is the first analysis in more than 20,000 individuals from mainly population-

based studies that describes novel associations of afamin with prevalent and incident 

type 2 diabetes and type 2 diabetes-related phenotypes. The main findings were: 1) 

increased afamin concentrations were significantly associated with prediabetes and 

type 2 diabetes at baseline and type 2 diabetes-related phenotypes such as insulin 

resistance defined by HOMA-IR and whole-body ISI(composite). 2) Afamin 

concentrations at baseline significantly predicted the development of type 2 diabetes 

during follow-up. All these associations were independent from major metabolic risk 

factors or parameters. 3) Afamin showed a significant improved model fit and gain in 

classification accuracy for incident type 2 diabetes when added to an extended 

adjustment model including major metabolic risk factors or parameters. 

Previously, we showed that afamin concentrations measured at baseline were 

significantly related to all components of the metabolic syndrome, with one of the 

strongest associations found with elevated waist circumference at both the baseline 

and follow-up investigation (6). Elevated waist circumference and BMI are measures 

of increased body fat and well-established risk factors for the metabolic syndrome 

and type 2 diabetes (21-23). Furthermore, this increase in body fat elevates not only 

the risk for type 2 diabetes but also for insulin resistance. Most importantly, in our 

large analysis afamin was associated with prediabetes, measures of insulin 

resistance as well as the prevalence and incidence of type 2 diabetes independently 

of major metabolic factors or parameters. Taken together, the findings on incident 

type 2 diabetes and prediabetes strongly suggest that afamin might be a valid marker 

to predict a high risk for developing type 2 diabetes. Novel mechanisms and 

pathways besides those related to metabolic syndrome might be involved. 

Adipose tissue can affect the development of insulin resistance in other tissues 

such as liver by producing free fatty acids and several other pro- and anti-

inflammatory factors (24). Insulin resistance causes hyperinsulinemia and leads to 

steatosis via various mechanisms such as increased hepatic de novo lipogenesis 

(24), inflammation, and lipotoxicity (25). There is evidence that non-alcoholic fatty 

liver disease might also be a risk factor for future type 2 diabetes and not only vice 

versa (26). As afamin is primarily expressed in liver, the liver might indeed play an 
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important role in contributing to elevated afamin concentrations and thus 

development of type 2 diabetes. 

In general, afamin seems to have heterogeneous effects depending on the site 

of action. It has been shown that afamin might have binding properties for two of the 

major forms of anti-oxidative vitamin E, α-tocopherol and γ-tocopherol (14). The anti-

oxidative function of vitamin E remains controversial (27). Our previous work has 

demonstrated that plasma afamin concentrations are not associated with those of 

vitamin E, indicating that afamin does not play a major role in binding and 

transporting vitamin E in plasma (in fact, vitamin E is mostly carried by the lipoprotein 

system) (10). Thus, the proposed vitamin E binding role of afamin might be of 

functional relevance for diseases such as type 2 diabetes and metabolic syndrome 

only in extravascular fluids or tissues. Possible mechanisms for such a scenario 

remain unknown. 

The causality of afamin’s association with type 2 diabetes as well as possible 

underlying mechanisms remains to be elucidated. The preliminary findings of a 

hyperglycemic phenotype in mice transgenic for the human afamin gene are 

supportive for a causal role of afamin for the development of type 2 diabetes (6). A 

direct role of afamin in glucose metabolism was very recently shown by Shen et al. in 

a thyroid carcinoma cell line transfected with human afamin (28). Afamin was found 

to upregulate several key enzymes and metabolites of glucose metabolism revealing 

new possible insights into the molecular functions of afamin. Since the transgenic 

animals as well as the transfected cell line model are of only limited relevance for the 

pathogenesis of type 2 diabetes in humans, both models have to be considered with 

caution as valid models for a functional and causal role of afamin in type 2 diabetes. 

Our results are in accordance with a recently reported study demonstrating a 

strong association between concentrations of microRNA-122 (miRNA-122), and the 

incidence for metabolic syndrome and type 2 diabetes in the Bruneck Study (29). 

MiRNA-122 was also highly significantly associated with afamin analysed by 

proteomics approach. MiRNAs play a key role in the epigenetic regulation of gene 

expression. MiRNA-122 is the predominant miRNA in liver and regulates a number of 

genes involved in cholesterol and fatty acid metabolism (for review, see (30). Willeit 

et al. therefore investigated in a mouse model the expressed hepatic proteome after 

antisense targeting of miRNA-122. Afamin was not differentially expressed when 
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comparing untreated mice with mice lacking miRNA-122 suggesting no gene 

regulatory function of miRNA-122 for afamin at least in mice (29). 

Finally, the question remains whether afamin adds information to well-known 

risk predictors for incident type 2 diabetes. All measures of discrimination and 

reclassification, i.e. deviance, continuous and categorical NRI, suggested a 

significant and valuable gain in model fit and classification accuracy in the 

population-based KORA F4 Study when afamin measured at baseline was added to 

a risk model including age, sex, metabolic risk factors or parameters, glucose 

concentrations ≥100 mg/dL and a positive family history of diabetes. This is even 

more impressive as most of these metabolic risk factors or parameters are major 

components of the metabolic syndrome.  

A main strength of the study is that data were generated from eight independent 

populations, the great majority of them being population-based. In addition, we had 

follow-up data on incident type 2 diabetes available in all of these studies. It might be 

considered as a limitation that we performed the extended analyses and adjusted for 

potential confounders or risk factors such as smoking, alcohol intake, physical 

activity, waist circumference or fasting glucose concentrations and family history of 

diabetes mainly in the large population-based in-house KORA F4 Study that had all 

this variables available and included only fasting participants. However, a further 

analysis was added adjusting for fasting glucose concentrations in 6 of the 8 cohorts 

that had fasting glucose concentrations available, and results remained highly 

consistent. Data on family history of diabetes besides the power issue might be 

moreover susceptible to inaccuracies. However, doing so, showed very similar 

results as in the presented main pooled analyses.  

Statistical concepts for risk reclassification such as categorical NRI have known 

limitations such as the arbitrary choice of risk categories if no recommended risk 

thresholds exist. Therefore, we also applied the continuous NRI that does not rely on 

predefined risk categories. Moreover, the result of the test on deviances was in line 

with the results of both NRI analyses. Thus, the model performance of afamin was 

consistent over all applied statistical concepts of risk prediction and discrimination. 

Marginal differences in NRI analyses when family history of diabetes was further 

added to the risk model were most probably caused by limited statistical power; 

however, the main conclusion drawn that afamin improved type 2 diabetes risk 
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reclassification did not change. Moreover, as in most epidemiological studies, we 

cannot exclude that results are to some extent biased by residual and unmeasured 

confounding as well as loss-to-follow-up. Finally, the analyses were performed only in 

Caucasians and thus it has to be elucidated whether these findings can be replicated 

in other ethnicities.  

In summary, this large analysis of mainly population-based studies 

demonstrated that afamin is highly significantly associated with prediabetes, insulin 

resistance, prevalence of type 2 diabetes as well as the development of type 2 

diabetes independent of major metabolic risk factors or parameters. Increased 

plasma afamin concentrations may therefore indicate the development of type 2 

diabetes already at a very early stage. As the number of individuals diagnosed with 

diabetes is steadily increasing since decades and according to the WHO global 

diabetes prevalence has doubled since 1980, finding crucial markers contributing to 

the development of type 2 diabetes is indispensable for an adequate and rapid 

identification of affected patients or patients at high risk as well as for the elucidation 

of the pathogenesis of this disease. 
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Figures legends 

Figure 1: Forest plot illustrating the association of afamin with prevalent type 2 

diabetes (extended adjustment model), based on a random effects (RE) model for all 

8 studies as well as excluding KORA F3 and NPHSII since most participants in these 

studies were non-fasting. Panel A provides data for an afamin increment of 10 mg/L 

and panel B provides data for afamin divided into quartiles. Odds Ratios and 95% 

confidence intervals are shown for each study and the pooled analyses. Numbers for 

prevalent type 2 diabetes (yes / no) refer to the age- and sex-adjusted model. 

 

Figure 2: Forest plot illustrating the association of afamin (increment 10 mg/L) with 

incident type 2 diabetes (extended adjustment model), based on a random effects 

(RE) model for all 8 studies as well as excluding KORA F3 and NPHSII. Panel A 

provides data for an afamin increment of 10 mg/L and panel B for afamin divided into 

quartiles. Odds Ratios and 95% confidence intervals are shown for each study and 

the pooled analyses. Numbers for incident type 2 diabetes (yes / no) refer to the age- 

and sex-adjusted model. 
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Table 1: Pooled results from study-specific linear regression analyses of afamin (increment 10 mg/L) on 

type 2 diabetes-related phenotypes at the baseline investigation excluding those with type 2 diabetes at 

baseline. 

 Adjustment for age and sex Extended adjustment 

Parameters / (n individuals) ß (95% CI) *, ‡ P ß (95% CI) †, ‡ P 

Ln-HbA1c (%) (n=7,828) § 0.006 (0.004-0.008) 4.41x10-10 0.003 (0.002-0.005) 3.09x10-4 

Ln-Insulin (µlU/ml) (n=13,156) || 0.172 (0.146-0.198) 3.32x10-39 0.101 (0.083-0.120) 1.51x10-26 

Ln-Glucose (mg/dL) (n=13,183) || 0.015 (0.010-0.020) 4.68x10-10 0.009 (0.006-0.013) 7.48x10-7 

Ln-HOMA-IR (n=13,153) || 0.187 (0.158-0.216) 3.00x10-36 0.110 (0.089-0.132) 1.37x10-23 

Ln-ISI(composite) (n=926) ¶ -0.246 (-0.278- -0.214) 2.18x10-50 -0.171 (-0.204- -0.137) 4.53x10-24 

N refer to the age- and sex-adjusted model; Ln refers to log-transformation based on the natural logarithm 

(ln). 
* Adjusted for age and sex; 
† Adjusted for age, sex, HDL cholesterol, triglycerides, BMI and hypertension 
‡ Meta-analysis beta estimate, 95% CI and P-values derived from a random effects model 
§ Studies included: Bruneck, SAPHIR, KORA F3, and KORA F4 
|| Studies included: Bruneck, SAPHIR, KORA F4, CoLaus, YFS, and FamHS 
¶ Study included: KORA F4 
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Table 2: Reclassification of individuals into low, medium and high risk categories for development of 

type 2 diabetes within the study period in the KORA F4 Study (median follow-up 6.4 years) when 

additionally considering afamin in the risk model. The baseline model includes the risk factors or 

parameters age, sex, HDL cholesterol, triglycerides, BMI, hypertension and glucose concentrations 

≥100 mg/dL (100-125 mg/dL vs. <100 mg/dL= reference). 

Individuals with incident type 2 diabetes (n=132) 
 Baseline model plus afamin 

Baseline model Total <5% risk 5-24% risk >=25% risk 

<5% risk 17 10 (58.8) 7 (41.2) * 0 (0.0) * 

5-24% risk 70 4 (5.7) † 49 (70.0) 17 (24.3) * 

>=25% risk 45 0 (0.0) † 5 (11.1) † 40 (88.9) 

Total 132 14 61 57 

* Moved to higher risk category which is correctly reclassified (light gray), n = 24; † Moved to lower 

risk category which is wrongly reclassified (dark gray), n = 9; stayed in the same risk category 

(medium grey), n=99; NRI 0.114 (95%CI 0.031-0.221), p=0.002. 

 

Individuals without incident type 2 diabetes (n=1,718) 
 Baseline model plus afamin 

Baseline model Total <5% risk 5-24% risk >=25% risk 

<5% risk 1,202 1,156 (96.2) 45 (3.7) † 1 (0.08) † 

5-24% risk 422 84 (19.9) * 310 (73.5) 28 (6.6) † 

>=25% risk 94 0 (0.0) * 26 (27.7) * 68 (72.3) 

Total 1,718 1,240 381 97 

* Moved to lower risk category which is correctly reclassified (light gray), n =110; † Moved to higher 

risk category which is wrongly reclassified (dark gray), n=74; stayed in the same risk category 

(medium grey); n =1534; NRI 0.021 (95%CI 0.006-0.036), p=0.008. 

Values are presented as n (row percent). 

Categorical net reclassification improvement (NRI) in this table is calculated for 132 individuals with 

and for 1,718 individuals without type 2 diabetes. Overall NRI for the total group: 0.135 (95%CI 
0.048-0.221), p=0.002. 
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Study Populations and Study Design 
KORA F3 and KORA F4 

The Cooperative Health Research in the Region of Augsburg (KOoperative 

Gesundheitsforschung in der Region Augsburg, KORA) Study incorporates population-

based cohort studies drawn from equally sized ten year age-sex-strata of the target 

population which consists of all 25 to 74 year old German residents of the city of Augsburg, 

Germany and two surrounding counties, and was initiated as part of the WHO MONICA 

Study. A detailed description of the sampling methods is given elsewhere (1). A standardized 

face-to-face interview and medical examinations including blood draw as well as 

anthropometric measurements were done by certified medical staff in all study participants 
(1). Moreover, participants were asked to bring all product packages of currently used 

medication to the study centre.  

The KORA F3 study is a follow-up investigation of the KORA S3 study conducted in 

1994/1995 with a response rate of 75%. Of all 4,856 KORA S3 participants, 3,184 also 

participated in 2004/2005 in KORA F3. About 92% of the KORA F3 participants were non-

fasting. Afamin data were available in 3,158 KORA F3 participants. Prevalent type 2 diabetes 

at KORA F3 was defined as self-reported and validated by hospital records or by questioning 

the responsible physician, or as current use of antidiabetic medication. Additionally, a 

validation of the diabetes type was requested. If no type validation, but also no contradicting 

information was given, diabetic participants were assumed to have type 2 diabetes. 

Incident cases of type 2 diabetes were mainly assessed using follow-up questionnaire 

data collected in 2008/2009. Self-reported type 2 diabetes and the date of diagnosis were 

validated by hospital records or by questioning the responsible physician. Furthermore, 

hospital records of those deceased during the follow-up period were examined. The records 

were searched for a history of type 2 diabetes and the date of diagnosis. If a physician-

diagnosis of type 2 diabetes was known from other sources, e.g. from the records of the 

population-based MONICA/KORA registry of acute myocardial infarction, this information 

was also used. In general, incident cases of type 2 diabetes, which had been diagnosed up 

to December 31, 2009, were included. In total, 13% of participants were lost to follow-up. 

The KORA F4 study is a follow-up of the independent KORA S4 survey, conducted 

between 1999 and 2001 in the same geographical region as KORA S3, with a response rate 

of 67%. Of all 4,261 KORA S4 participants, 3,080 also participated between 2006 and 2008 
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in the follow-up study KORA F4. Afamin data were available in 3,059 KORA F4 participants. 

The second follow-up (KORA FF4) was conducted in 2013/2014 and 2,161 former F4 

participants took part. Of them, 2,148 had data on afamin. Prevalent type 2 diabetes at 

KORA F4 was defined as self-reported and validated by hospital records or by questioning 

the responsible physician, or as current use of antidiabetic medication. Additionally, a 

validation of the diabetes type was requested. If no type validation, but also no contradicting 

information was given, diabetic participants were assumed to have type 2 diabetes. In the 

type 2 diabetes incidence analyses, only those participants who attended both the KORA F4 

and KORA FF4 studies were included. The percentage of loss-to-follow up could be 

quantified with 30%. Incident type 2 diabetes in KORA FF4 was assessed and defined as 

specified for prevalent type 2 diabetes in KORA F4.  

All KORA F4 participants without known diabetes were to receive a standard oral 

glucose tolerance test (OGTT), carried out in the morning (7:00 am to 11:00 am). 

Participants were asked to fast for 10h overnight, to avoid heavy physical activity on the day 

before examination and to refrain from smoking before and during the test. Exclusion criteria 

for the OGTT were: (i) consumption of foods or drinks containing calories within 8h before 

the fasting blood draw; (ii) medical contraindications such as gastrointestinal disease, 

fructose-intolerance, currant allergy, weakness, risk of hypoglycaemia, or pregnancy. Fasting 

venous blood was sampled for glucose determination and 75g of anhydrous glucose given 

(Dextro OGT, Boehringer Mannheim, Germany, containing currant extract). In order to keep 

type 2 diabetes definitions comparable across the investigated study populations, KORA F4 

OGTT data were not used for type 2 diabetes definition in the current pooled study but for 

prediabetes definition and for calculation of the whole-body insulin sensitivity index 

ISI(composite) as well as risk discrimination and reclassification analyses that were done in 

KORA F4 only. 

Hypertension was defined as systolic blood pressure ≥140 mmHg and/or diastolic 

blood pressure ≥90 mmHg and/or antihypertensive drug treatment in case the individual was 

aware of the disease. 

In both cohorts, the cholesterol-esterase method (CHOL Flex, Dade-Behring, 

Germany) was applied to determine total cholesterol. For triglyceride and HDL cholesterol 

concentrations the TGL Flex and AHDL Flex method (Dade-Behring) and for LDL cholesterol 

a direct method (ALDL, Dade-Behring) was used, respectively. In KORA F4, fasting serum 

insulin was assessed by ELISA (Invitrogen, Darmstadt, Germany) and fasting serum glucose 
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using a hexokinase method (GLU Flex, Dade Behring, Deerfield, IL). The following formula 

was applied to calculate HOMA-IR: fasting insulin [μU/mL] * fasting glucose [mg/dL] / 405 (2). 

The quantification of HbA1c was done in hemolyzed whole blood in KORA F4 with a cation-

exchange HPLC photometric assay on an Adams HA-8160 Hemoglobin Analysis System 

(Arkray Inc., distributed by A. Menarini Diagnostics, Florence, Italy) and in KORA F3 with a 

turbidimetric immunoassay method (Tina-quant® Hämoglobin A1c) on a Dimension RXL 

instrument, Dade-Behring Inc., Newark U.S.A. High-sensitivity CRP (hs-CRP) was measured 

by immunonephelometry on a BN II analyzer using the CardioPhase assay from Siemens 

(Marburg, Germany) (3,4) 

CoLaus Study 

The CoLaus (Cohorte Lausannoise) Study was designed to examine the epidemiology 

and genetic determinants of cardiovascular disease. In total, 6,188 Caucasian participants, 

3,251 females and 2,937 males aged between 35 and 75 years, were recruited using a 

simple non-stratified random sample of the population registry of the city of 

Lausanne, Switzerland (5). The participation rate was 41% and all participants came to the 

outpatient clinic of the University Hospital of Lausanne in the morning after an overnight fast. 

Venous blood samples were drawn and routine clinical assays were performed at the Clinical 

Laboratory of the Centre Hospitalier Universitaire Vaudois (CHUV). Total cholesterol was 

measured by CHOD-PAP, HDL cholesterol by CHOD-PAP + PEG + cyclodextrin and 

triglycerides by GPO-PAP. LDL cholesterol was calculated based on the Friedewald formula 

only if triglycerides were <4.6 mmol/l. The measurement of high sensitive CRP (hsCRP) was 

carried out with a latex– enhanced HS immunoassay (Roche Diagnostics, CH). A solid-

phase, two-site chemiluminescent immunometric assay by Diagnostic Products Corporation, 

Los Angeles, USA was applied for insulin and glucose dehydrogenase (Roche Diagnostics, 

CH) for glucose measurement. HOMA-IR was estimated as fasting serum insulin (mU/l) * 

fasting plasma glucose (mmol/l) / 22·5. Hba1c was not available. Afamin was measured in 

4,773 participants. In CoLaus, type 2 diabetes was defined as fasting plasma glucose ≥7.0 

mmol/L and/or oral hypoglycaemic or insulin treatment. In case of diabetes without self-

reported type 1 diabetes, a participant was defined to have type 2 diabetes. 

Cardiovascular Risk in Young Finns Study (YFS) 

The YFS is a prospective multicenter study from Finland initiated in 1980 (n = 3,596, 

baseline age range 3–18 years) with several follow-ups over a time period of 30 years. Main 

aim is the investigation of risk factors for cardiometabolic outcomes (6,7).  
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Detailed data were collected by questionnaires, physical measurements, and blood 

tests, including information on general health status, serum lipids, insulin, obesity indices, 

blood pressure, and smoking status. In addition, risk factors such as C-reactive protein 

(CRP) have been measured. After an overnight fast venous blood samples were drawn and 

stored at −70°C. Serum triglyceride concentration was measured using the enzymatic 

glycerol kinase–glycerol phosphate oxidase method (Triglyceride reagent, Beckman Coulter 

Biomedical, Ireland). Serum total cholesterol, HDL cholesterol (after precipitation of low 

density lipoprotein (LDL) and very low density lipoprotein levels were assessed with dextran 

sulfate–Mg2+ by the enzymatic cholesterol esterase–cholesterol oxidase method 

(Cholesterol reagent, Beckman Coulter Biomedical). An enzymatic hexokinase method 

(Glucose reagent, Beckman Coulter Biomedical) was applied to measure serum glucose 

concentrations. Serum insulin concentration was examined by microparticle enzyme 

immunoassay kit (Abbott Laboratories, Chicago, IL) (8). LDL-cholesterol was determined by 

the Friedewald formula in participants with triglyceride concentrations <4.0 mmol/l. Afamin 

values are available from 2,270 individuals in the 2001 follow-up which served as our 

baseline investigation. The data for incident type 2 diabetes are taken from the 2007 or the 

2011 follow-up investigations. Of included participants at baseline, 13% were lost to follow-

up. Glycated hemoglobin A1c (HbA1c) was not yet available in 2001. Insulin resistance was 

estimated based on the HOMA index, i.e. the product of fasting glucose and insulin divided 

by the constant 22.5. The diagnosis of type 2 diabetes was based on fasting glucose 

concentrations ≥7mmol/l or HbA1c ≥6.5% or self-reported diabetes or use of medication (9). 

NHLBI Family Heart Study (FamHS) 

The Family Heart Study was initiated in 1992 with the ascertainment of 1,200 families 

with approximately 6,000 individuals, half randomly sampled, and half selected because of 

an excess of coronary heart disease (CHD) or risk factor abnormalities and funded by the 

National Heart, Lung, and Blood Institute (NHLBI) (10). The FamHS is a prospective study 

that investigates the genetic and non-genetic determinates of atherosclerosis. Study 

participants belonging to the largest pedigrees were invited for a second clinical examination 

in 2002/03.  

Fasting triglyceride concentrations were assayed using triglyceride GB reagent and 

serum total cholesterol using a commercial cholesterol oxidase method on the Roche 

COBAS FARA centrifugal analyzer (Boehringer Mannheim Diagnostics, Indianapolis, IN). 

Low-density lipoprotein (LDL) cholesterol was calculated using the Friedewald formula in 
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case of triglyceride concentrations <4.5 mmol/L (400 mg/dL). Otherwise, LDL was measured 

by ultracentrifugation (11). Fasting glucose was examined by a thin film adaptation of an 

enzymatic glucose-oxidase spectrophotometric procedure using the Vitros analyzer (Ortho 

Clinical Diagnostics, Rochester, NY) and insulin concentrations by the coated-tube 

radioimmunoassay method (Diagnostic Products Corporation, Los Angeles, CA) (12). Type 2 

diabetes was defined as intake of hypoglycaemic agents, participants reporting a previous 

clinical diagnosis of type 2 diabetes, or fasting glucose at or above 7 mmol/L. Individuals with 

type 1 diabetes and age of type 2 diabetes diagnosed before an age of 20 years were 

excluded. In the current analysis, 1,877 participants of Caucasian origin with available afamin 

values were included. Finally, 36% of participants were lost to follow-up. 

Bruneck-Study 

The prospective, population-based Bruneck Study was designed to investigate the 

epidemiology and pathogenesis of atherosclerosis (13,14). In 1990, a random sample including 

1,000 subjects of Caucasian origin recruited from the entire population of Bruneck was 

stratified according to sex and age with 125 subjects of each sex and 5th to 8th decade of 

age. The participation rate was 93.6% resulting in 919 subjects with complete data. In an 

interval of five years, follow-up examinations were performed. The baseline for this 

investigation was the 1995 examination and follow-up data were taken from the 2010 

investigation. Of the 826 subjects included at baseline, all had afamin data and detailed 

information on prevalent and incident diabetes available. All laboratory measurements were 

determined in samples collected in 1995 and measured by validated standard laboratory 

methods as described previously (14,15). HbA1c was determined by high performance liquid 

chromatography (DCCT-aligned assay and insulin resistance by homeostasis model 

assessment (HOMA-IR) applying the formula fasting plasma glucose in mmol/l × fasting 

serum insulin in mU/l divided by 22.5. Definition of type 2 diabetes was based on the 1997 

American Diabetes Association criteria (fasting glucose ≥126 mg/dL, i.e. ≥7 mmol/L) and/or 

receiving anti-diabetic treatment and diabetes diagnosis validated through medical records 
(16). 

SAPHIR-Study 

The SAPHIR Study (Salzburg Atherosclerosis Prevention Program in subjects at High 

Individual Risk) is an observational study accomplished in the years 1999 to 2002 based 

on 1,770 healthy unrelated Caucasian subjects. The recruitment of study participants was 
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done through health screening programs in large companies in and around the city of 

Salzburg (17). Clincial examinations were performed with a main focus on CVD risk factors 

and lipid metabolism. After an overnight fasting period, venous EDTA blood was collected. 

Plasma was gathered by low-speed centrifugation and stored at −70°C. Afamin was available 

in 1,499 participants at the baseline examination. Follow-up examinations were conducted 

between 2002 and 2008 with a mean follow-up time of 4.59 years; range: 2.10-8.42 years, 

22% loss to follow-up. Type 2 diabetes was defined according to the 1997 American 

Diabetes Association criteria (fasting glucose ≥126 mg/dL) and/or receiving anti-diabetic 

treatment and diabetes diagnosis validated through medical records (17). 

Second Northwick Park Heart Study (NPHS-II) 

The prospective Second Northwick Park Heart Study (NPHS-II) included 3,052 

unrelated healthy middle-aged men from nine general practices in the United Kingdom 
(18). Baseline characteristics were obtained by questionnaire completed at study entry in 

1989. Of the initial cohort, 3,012 men were Caucasian and 2,674 eligible men had afamin 

measured. These men were prospectively followed with the aim to comprehensively study 

CVD risk factors and outcomes. Only 3% of participants could not be included at follow-up. 

For all examinations, participants were non-fasting, but have avoided smoking, vigorous 

exercise or heavy meals from midnight the day before. Data on lifestyle habits, 

anthropometrics, blood pressure and various blood biomarkers were collected at the baseline 

and prospective follow-up investigations. Lipids, total cholesterol, and triglyceride 

concentrations were gathered with automated enzyme procedures. More details on 

recruitment and measurements have been reported elsewhere (19). Prevalent diabetes 

was defined by self-report (answer to the question: have you ever had diabetes?) in the 

Second Northwick Park Heart Study (NPHS-II) and diagnosis of incident diabetes was 

validated through medical records (from a note search undertaken in 2005). 

Measures of insulin resistance 

Besides the homeostasis model assessment-estimated insulin resistance (HOMA-IR) 

we calculated the whole-body insulin sensitivity index (ISI(composite)) (20), a valid surrogate 

measure of data derived from euglycemic insulin clamp, based on the formula: ISI = 10,000 / 

sqrt ((fasting glucose (mg/dL) * fasting insulin ((µlU/ml))*(2-h glucose (mg/dL) * 2-h insulin 

(µlU/ml))) as recently applied in KORA F4.  

HOMA-IR and whole-body ISI(composite) were also analysed divided by a cut-off of 

2.5. Whole-body IS (composite) values ≥2.5 reflect insulin sensitivity, values <2.5 insulin 
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resistance (21). For HOMA-IR values ≥2.5 refer to insulin resistance, and values <2.5 to 

insulin sensitivity. Data on whole-body ISI(composite) were only available in individuals ≥ 62 

years of age (22). 

Measurement of afamin plasma concentrations 

As previously described (23,24) afamin was quantified with a custom-made double-

antibody sandwich ELISA using an affinity-purified biotinylated polyclonal anti-afamin 

antibody for coating 96-well streptavidin-bound microtiter plates and peroxidase-conjugated 

monoclonal antibody N13 for detection (MicroCoat Biotechnologie GmbH, Bernried, 

Germany). Secondary plasma in serial dilutions that was initially calibrated with a primary 

standard served as the assay standard. Afamin purified to homogeneity from human plasma 

was originally used as the primary standard and the protein concentration of this standard 

was estimated by quantitative amino-acid compositional analysis. Within-run and between-

run coefficients of variation were 3.3% and 6.2%, respectively (mean concentration 73 mg/L) 
(25). The four same control samples were added to each assay plate using new aliquots each 

time which were thawed the first time. These control samples were used in all eight studies 

and were assayed in duplicates. These four samples were monitored throughout the entire 

project and the assay was repeated when more than one control samples showed a 

divergent result of more than 10% from the expected values. The intra-assay coefficient of 

variation (CV) was calculated from the mean and standard deviation (SD) of each of the 

measured four control samples using the formula CV (%) = SD * 100 / mean using 284 

duplicate measurements. The inter-assay CV was calculated using the same formula using 

the values of the same four controls samples included in 71 runs over a period of six months. 

The samples of all study participants for each study were measured in a random way 

independent of a case-control status and the lab personnel was blinded to all variables 

except the study name. Afamin concentrations were measured for all studies in the 

laboratory at the Medical University of Innsbruck. A previous report on the assay evaluation 

described afamin as a robust, stable analyte that is virtually unchanged under different 

storage conditions. It is independent of sex, fasting state, and a daily and monthly rhythm (25). 

In this pooled analysis, data on afamin concentrations was available in 20,136 individuals. 
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Supplementary Table 1: Clinical and laboratory data of participants with available afamin measurements in the Bruneck Study (n=826), KORA F3 Study 
(n=3,158), KORA F4 Study (n=3,059), SAPHIR Study (n=1,499), CoLaus Study (n=4,773), NPHS-II Study (n=2,674), YFS Study (n=2,270), and FamHS Study 
(n=1,877). 

 Study population 
 Bruneck 

(n=826) 
KORA F3*  
(n=3,158) 

KORA F4 
(n=3,059) 

SAPHIR 
(n=1,499) 

Age, yrs (minimum-maximum) 63±11 
53/63/72 (45-85) 

57±13 
46/57/67 (35-84) 

56±13 
44/56/67 (32-81) 

51±6 
46/52/55 (39-67) 

Gender: male/female: n, % 414/412 
50.1/49.9 

1533/1625 
48.5/51.5 

1477/1582 
48.3/51.7 

1010/489 
67.4/32.6 

Smoking (Non-smoker/Ex-smoker/Smoker): n, % 452/213/161 
54.7/25.8/19.5 

1325/1101/551 
44.5/37.0/18.5 

1349/1160/546 
44.2/38.0/17.9 

957/214/328 
63.8/14.3/21.9 

Follow-up time (years) 12.5 ± 4.3 
10.3/15.0/15.0 

4.5 ± 0.4 
4.2/4.5/4.8 

6.5 ± 0.3 
6.3/6.4/6.6 

4.6± 0.7 
4.3/4.4/4.6 

Afamin (mg/L) 62.6±15.3 
52.1/61.5/71.7 

71.4±17.1 
59.3/69.7/81.4 

70.6±17.2 
58.8/68.7/80.6 

66.2±14.3 
56.4/64.1/73.9 

Body mass index, kg/m² 25.7±3.9 27.6±4.6 27.6±4.8 26.8±4.1 
Obesity (BMI ≥30: n, (%)) 115 (13.9) 842 (26.9) 809 (26.6) 280 (18.7) 
Systolic blood pressure (mmHg) 148±21 131±20 122±18 138±18 
Diastolic blood pressure (mmHg) 87±9 82±11 75±10 86±12 
Hypertension: n, % 564 (68) 1576 (50) 1169 (38) 821 (55) 
Antihypertensive medication: n, % 230 (28) 996 (32) 944 (31) 212 (14) 
Waist circumference (cm) 90±11 95±13 94±14 95±12 
Total cholesterol, mg/dL 230±42 218±40 216±40 227±39 
HDL cholesterol, mg/dL 59±16 59±17 56±14 59±16 
LDL cholesterol, mg/dL 145±38 128±33 136±35 145±36 

Triglycerides, mg/dL 132±81 
81/111/158 

165±126 
88/135/201 

125±89 
72/104/151 

126±89 
72/101/151 

Use of lipid lowering drugs: n, % 38 (4.6) 337 (10.7) 382 (12.5) 63 (4.2) 
Type 2 Diabetes: n, % 93 (11.2) 260 (8.3) 245 (8.0) 41 (2.7) 
Diabetes medication: n, % 38 (4.6) 205 (6.5) 179 (5.9) 23 (1.5) 
HbA1c (%)† 5.5±0.7 

5.1/5.4/5.8 
5.4±0.5 

5.1/5.3/5.5 
5.6±0.6 

5.2/5.5/5.7 
5.6±0.6 

5.4/5.6/5.7 
HOMA-IR 4.0±5.3 

2.1/3.0/4.3 NA 2.1±8.3 
0.6/1.0/1.7 

1.8±1.5 
0.9/1.4/2.1 

Fasting glucose (mg/dL) 102±24 
91/97/107 NA 98±19 

88/94/102 
93±18 

85/91/98 
Fasting insulin (µlU/ml) 15±13 

9/12/17 NA 9±34 
3/4/7 

7±5 
4/6/9 

eGFR (mL/min/1.73m2) 79±15 83±18 84±17 95±12 
Hs-CRP (mg/L) 3.4±7.4 

1.0/2.0/3.0 NA 2.5±5.3 
0.6/1.2/2.6 

2.8±6.6 
0.8/1.5/2.9 

Values are provided as mean and standard deviation and 25th, 50th and 75th percentile where appropriate and in case of non-normal distribution as not indicated otherwise or number, % (=valid percent considering missing values). 
To convert mg/dL in mmol/L multiply by 0.0555 for glucose, 0.0259 for cholesterol and 0.0113 for triglycerides. To convert µlU/ml in pmol/L for insulin, multiply by 7.175. * Participants (92.3%) non-fasting; † To convert % to 
mmol/mol the following formula is used: New (mmol/mol) = 10.93xOld (%) - 23.5 mmol/mol. Hypertension defined according to the JNC7 Criteria (systolic blood pressure ≥140 mmHg and/or diastolic blood pressure ≥90 mmHg, 
and/or receiving antihypertensive treatment); Lipid lowering drugs includes statin and/or fibrate use; Glomerular filtration rate (eGFR) measured according to the CKD-EPI equation (26). 
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Supplementary Table 1 (continuation): Clinical and laboratory data of participants in those with afamin measurements available in the Bruneck Study (n=826), 
KORA F3 Study (n=3,158), KORA F4 Study (n=3,059), SAPHIR Study (n=1,499), CoLaus Study (n=4,773), NPHS-II Study (n=2,674), YFS Study (n=2,270), and 
FamHS Study (n=1,877). 

 Study population 
 CoLaus 

(n=4,773) 
NPHS-II* 
(n=2,674) 

YFS 
(n=2,270) 

FamHS 
(n=1,877) 

Age, yrs (minimum-maximum) 58±10 
49/57/66 (40–82) 

59±3 
56/59/62 (50-66) 

32±5 
27/33/36 (24-39) 

52±14 
39/53/63 (25-89) 

Gender: male/female: n, % 2235/2538 
46.8/53.2 2674 (100) 1020/1250 

(45/55)  
863/1014 

46/54 
Smoking (Non-smoker/Ex-smoker/Smoker): n, % 1948/1785/1040 

40.8/37.4/ 21.8 
860/1072/742 
32.2/40.1/27.8 

1031/402/776 
46.7/18.2/35.1 

910/492/248 
48.5/26.2/13.2 

Follow-up time (years) 5.0±0.5 
5.0/5.2/5.3 

9.2±2.9 
8.3/10.0/10.8 

9.4±1.4 
10.0/10.0/10.0  

7.3±0.8 
6.7/7.3/7.9 

Afamin (mg/L) 73.1±16.6 
61.3/71.3/82.8 

67.0±15.8 
55.9/65.4/76.3 

61.4 ± 15.4 
50.7/59.0/70.2 

65.4±16.3 
53.8/63.8/75.3 

Body mass index, kg/m² 26.2±4.6 26.6±3.6 25.1±4.4 27.7±5.3 
Obesity (BMI ≥30: n, (%) 816 (17.1) 418 (15.8) 276 (12.3) 462 (24.6) 
Systolic blood pressure (mmHg) 126±18 134±18 117±13 117±18 
Diastolic blood pressure (mmHg) 78±11 82±11 71±11 69±10 
Hypertension: n, % 1969 (41.3) 1119 (41.9) 882 (39.3) 557 (29.7) 
Antihypertensive medication: n, % 1292 (27.1) 232 (8.7) 51 (2.5) 455 (24.2) 
Waist circumference (cm) 92±13 NA 84±12 97±15 
Total cholesterol, mg/dL 220±40.1 218±38 200±38 205±39 
HDL cholesterol, mg/dL 63±18 66±23 50±12 50±15 
LDL cholesterol, mg/dL 133±36 119±39 127±33 125±34 

Triglycerides, mg/dL 120±78 
71/97/142 

186±115 
112/155/229 

119±76 
71/97/142 

150±105 
84/125/185 

Use of lipid lowering drugs: n, % 877 (18.4) NA 7 (0.3) 163 (8.7) 
Type 2 Diabetes: n, % 503 (10.5) 68 (2.5) 17 (0.8) 171 (9.1) 
Diabetes medication: n, % 261 (5.5) 26 (1.0) 0 (0) 84 (4.5) 
HbA1c (%)† NA NA NA NA 
HOMA-IR 2.5±7.1 

1.1/1.6/2.7 NA 1.8±1.5  
1.0/1.4/2.1 

3.3±7.6 
1.4/2.1/3.3 

Fasting glucose (mg/dL) 106±20 
95/103/110 NA 90±9 

85/90/95 
100±28 

88/94/102 
Fasting insulin (µlU/ml) 9±16 

4/7/10 NA 8±6 
5/6/9 

12±15 
6/9/14 

eGFR (mL/min/1.73m2) 83±15 75±10 114± 6 84±16 

Hs-CRP (mg/L) 2.5±3.6 
0.7/1.3/2.8 

3.9±3.9 
1.2/3.5/5.1 

1.9±3.9 
0.3/0.8/1.9 NA 

Values are provided as mean and standard deviation and 25th, 50th and 75th percentile where appropriate and in case of non-normal distribution as not indicated otherwise or number, % (=valid percent considering missing 
values). To convert mg/dL in mmol/L multiply by 0.0555 for glucose, 0.0259 for cholesterol and 0.0113 for triglycerides. To convert µlU/ml in pmol/L for insulin, multiply by 7.175. * The NPHS-II Study includes only males. † To 
convert % to mmol/mol the following formula is used: New (mmol/mol) = 10.93xOld (%) - 23.5 mmol/mol. Hypertension defined according to the JNC7 Criteria (systolic blood pressure ≥140 mmHg and/or diastolic blood pressure ≥90 
mmHg, and/or receiving antihypertensive treatment); Lipid lowering drugs includes statin and/or fibrate use; Glomerular filtration rate (eGFR) measured according to the CKD EPI equation (26). 
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Supplementary Table 2: I2 index and p value from chi-square based Q-statistic based on an age- and sex-
adjusted model 

 All cohorts 
Excluding  

KORA F3 and NPHS-II 
Outcome  

I2 index 
p value  

(Q-statistic) I2 index 
p value  

(Q-statistic) 
Prevalent type 2 diabetes      

Afamin on a continuous scale 63.50 0.008 14.25 0.32 

Afamin categorized by quartiles 

Afamin 2nd vs. 1st quartile 34.86 0.16 34.12 0.19 

Afamin 3rd vs. 1st quartile 21.62 0.26 0 * 0.50 

Afamin 4th vs. 1st quartile 50.13 0.06 0 * 0.41 

Incident type 2 diabetes      

Afamin on a continuous scale 0 * 0.55 0 * 0.47 

Afamin categorized by quartiles 

Afamin 2nd vs. 1st quartile 35.30 0.15 6.71 0.38 

Afamin 3rd vs. 1st quartile 0 * 0.65 0 * 0.50 

Afamin 4th vs. 1st quartile 13.89 0.32 21.05 0.28 

Continuous type 2 diabetes-related phenotypes 

Ln-HbA1c (%) † 78.36 0.003 NA NA 

Ln-Glucose (mg/dL) ‡ 95.21 <0.0001 NA NA 

Ln-Insulin (µlU/ml) ‡ 93.57 <0.0001 NA NA 

Ln-HOMA Index ‡ 94.43 <0.0001 NA NA 

Ln refers to log-transformation based on the natural logarithm (ln). 

* In case of I2 = 0, the random effects model equals the fixed effects model 

† Cohorts included: Bruneck Study, SAPHIR Study, KORA F3 and KORA F4 Study (those without type 2 diabetes diagnosis at 
baseline). To convert % to mmol/mol the following formula is used: New (mmol/mol) = 10.93xOld (%) - 23.5 mmol/mol. 

‡ Includes all cohorts except KORA F3 and NPHS-II (those without type 2 diabetes diagnosis at baseline) 

NA, not applicable 
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Supplementary Table 3: Logistic regression analysis of afamin (increment 10 mg/L) on prevalent and 
incident type 2 diabetes 

 
Prevalent Type 2 Diabetes (total number): yes = 1,398, no = 18,696 

Study Type 2 Diabetes 
(1 = yes / 0 = no (=ref.) * 

OR (95% CI) † P OR (95% CI) ‡ P 

Bruneck Study (1 = 93 / 0 = 733) 1.68 (1.45-1.95) 8.47*10-12 1.42 (1.19-1.68) 7.26*10-5 

SAPHIR Study (1 = 41 / 0 = 1,447) 1.54 (1.28-1.84) 2.51*10-6 1.25 (1.01-1.55) 0.043 

FamHS Study (1 = 171 / 0 = 1,706) 1.38 (1.25-1.52) 9.17*10-11 1.19 (1.06-1.34) 3.70*10-3 

YFS Study (1 =17 / 0 = 2,253) 1.41 (1.11-1.78) 4.42*10-3 1.18 (0.86-1.62) 0.293 

NPHS-II Study (1 = 68 / 0 = 2,606) 1.26 (1.10-1.44) 7.19*10-4 1.06 (0.88-1.28) 0.535 

KORA F4 Study (1 = 245 / 0 = 2,805) 1.40 (1.30-1.51) 2.60*10-19 1.23 (1.13-1.34) 2.18*10-6 

KORA F3 Study (1 = 260 / 0 = 2,876) 1.25 (1.16-1.34) 2.24*10-9 1.05 (0.96-1.15) 0.260 

CoLaus Study (1 = 503 / 0 = 4,270) 1.44 (1.36-1.52) 3.05*10-38 1.21 (1.14-1.29) 1.28*10-9 

Meta-analysis including all studies § 1.40 (1.31-1.48) 2.54*10-27 1.19 (1.12-1.26) 5.96*10-08 

Meta-analysis excluding KORA F3 & NPHS-II || 1.44 (1.38-1.50) 5.64*10-61 1.23 (1.17-1.28) 2.62*10-20 
 

Incident Type 2 Diabetes (total number): yes = 585, no = 12,762 
Study Type 2 Diabetes 

(1 = yes / 0 = no (=ref.) * 
OR (95% CI) † P OR (95% CI) ‡ P 

Bruneck Study (1 = 52 / 0 = 681) 1.48 (1.21-1.82) 1.28*10-4 1.32 (1.04-1.68) 0.025 

SAPHIR Study (1 = 78 / 0 = 1,087) 1.64 (1.41-1.92) 2.28*10-10 1.33 (1.11-1.59) 1.83*10-3 

FamHS Study (1 = 83 / 0 = 1,036) 1.47 (1.30-1.66) 1.54*10-9 1.37 (1.18-1.59) 3.54*10-5 

YFS Study (1 = 55 / 0 = 1,900)  1.54 (1.35-1.76) 1.84*10-10 1.35 (1.13-1.61) 9.55*10-4 

NPHS-II Study (1 = 135 / 0 = 2,391) 1.42 (1.29-1.57) 1.34*10-12 1.18 (1.04-1.35) 0.013 

KORA F4 Study (1 = 86 / 0 = 1,925) 1.60 (1.42-1.80) 7.67*10-15 1.40 (1.23-1.60) 5.49*10-7 

KORA F3 Study (1 = 52 / 0 = 2,459) 1.46 (1.27-1.68) 9.64*10-8 1.28 (1.09-1.50) 2.70*10-3 

CoLaus Study (1 = 44 / 0 = 1,283) 1.32 (1.12-1.57) 1.19*10-3 1.17 (0.96-1.42) 0.124 

Meta-analysis including all studies § 1.49 (1.42-1.56) 5.97*10-62 1.30 (1.23-1.38) 3.53*10-19 

Meta-analysis excluding KORA F3 & NPHS-II || 1.52 (1.43-1.61) 4.52*10-45 1.34 (1.25-1.43) 1.90*10-16 

* Numbers refer to the age- and sex-adjusted model 
† Adjusted for age and sex; 

‡ Adjusted for age, sex, HDL cholesterol, triglycerides, BMI and hypertension 

§ Meta-analysis beta estimate (recalculated to an odds ratio and corresponding 95% CI) and P-values derived from a random 
effects model 

|| Meta-analysis beta estimate (recalculated to an odds ratio and corresponding 95% CI) and P-values derived from a 
random effects model without KORA F3 and NPHS-II. These two studies did not ask participants to be fasting at their 
examination. 
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Supplementary Table 4: Logistic regression analysis of afamin (divided into quartiles) on prevalent type 2 
diabetes 
Study * Type 2 Diabetes 

(1 = yes / 0 = no (=ref.) † 
OR (95% CI) ‡ P OR (95% CI) § P 

Bruneck Study 1st quartile (1 = 12 / 0 = 194) Reference    
Bruneck Study 2nd quartile (1 = 13 / 0 = 195) 1.19 (0.52-2.72) 0.684 1.07 (0.46-2.52) 0.869 
Bruneck Study 3rd quartile (1 = 23 / 0 = 183) 2.31 (1.09-4.88) 0.029 1.41 (0.62-3.19) 0.407 
Bruneck Study 4th quartile (1 = 45 / 0 = 161) 5.29 (2.65-10.58) 2.42*10-6 2.25 (1.02-5.00) 0.045 
SAPHIR Study 1st quartile (1 = 4 / 0 = 371) Reference    
SAPHIR Study 2nd quartile (1 = 3 / 0 = 369) 0.70 (0.15-3.16) 0.642 0.50 (0.11-2.33) 0.375 
SAPHIR Study 3rd quartile (1 = 8 / 0 = 364) 1.71 (0.51-5.76) 0.388 0.98 (0.27-3.47) 0.970 
SAPHIR Study 4th quartile (1 = 26 / 0 = 343) 6.01 (2.06-17.50) 1.01*10-3 1.96 (0.60-6.41) 0.266 
FamHS Study 1st quartile (1 = 22 / 0 = 447) Reference    
FamHS Study 2nd quartile (1 = 22 / 0 = 447) 0.74 (0.39-1.41) 0.355 0.45 (0.22-0.90) 0.023 
FamHS Study 3rd quartile (1 = 42 / 0 = 427) 1.38 (0.81-2.37) 0.238 0.87 (0.46-1.64) 0.670 
FamHS Study 4th quartile (1 = 85 / 0 = 385) 3.11 (1.93-5.01) 3.16*10-6 1.37 (0.75-2.50) 0.310 
NPHS-II Study 1st quartile (1 = 12 / 0 = 657) Reference    
NPHS-II Study 2nd quartile (1 = 8 / 0 = 660) 0.66 (0.27-1.62) 0.361 0.40 (0.15-1.08) 0.071 
NPHS-II Study 3rd quartile (1 = 14 / 0 = 655) 1.18 (0.54-2.58) 0.674 0.40 (0.15-1.06) 0.066 
NPHS-II Study 4th quartile (1 = 34 / 0 = 634) 2.93 (1.50-5.71) 2.00*10-3 1.15 (0.51-2.59) 0.727 
KORA F4 Study 1st quartile (1 = 25 / 0 = 736) Reference    
KORA F4 Study 2nd quartile (1 = 34 / 0 = 728) 1.18 (0.69-2.04) 0.541 0.94 (0.53-1.66) 0.832 
KORA F4 Study 3rd quartile (1 = 56 / 0 = 707) 1.88 (1.14-3.09) 0.013 1.13 (0.66-1.94) 0.651 
KORA F4 Study 4th quartile (1 = 130 / 0 = 634) 4.53 (2.87-7.15) 9.17*10-11 2.25 (1.34-3.77) 2.05*10-3 
KORA F3 Study 1st quartile (1 = 46 / 0 = 739) Reference    
KORA F3 Study 2nd quartile (1 = 41 / 0 = 745) 0.94 (0.60-1.47) 0.786 0.76 (0.47-1.22) 0.249 
KORA F3 Study 3rd quartile (1 = 64 / 0 = 721) 1.32 (0.88-1.98) 0.182 0.78 (0.49-1.21) 0.265 
KORA F3 Study 4th quartile (1 = 109 / 0 = 671) 2.57 (1.76-3.74) 8.71*10-7 1.07 (0.69-1.68) 0.756 
CoLaus Study 1st quartile (1 = 48 / 0 = 1,146) Reference    
CoLaus Study 2nd quartile (1 = 85 / 0 = 1,108) 1.74 (1.20-2.53) 3.64*10-3 1.38 (0.94-2.04) 0.101 
CoLaus Study 3rd quartile (1 = 119 / 0 = 1,074) 2.45 (1.71-3.50) 7.42*10-7 1.59 (1.09-2.31) 0.016 
CoLaus Study 4th quartile (1 = 251 / 0 = 942) 5.45 (3.92-7.58) 7.50*10-24 2.46 (1.71-3.52) 9.58*10-7 

Meta-analysis including all studies ||     

 1st quartile (1 = 169 / 0 = 4,290) Reference    
 2nd quartile (1 = 206 / 0 = 4,252) 1.09 (0.81-1.46) 0.572 0.80 (0.56-1.16) 0.238 
 3rd quartile (1 = 326 / 0 = 4,131) 1.74 (1.38-2.20) 3.47*10-6 1.02 (0.74-1.40) 0.917 
 4th quartile (1 = 680 / 0 = 3,770) 3.91 (2.97-5.14) 2.10*10-22 1.72 (1.27-2.33) 5.09*10-4 

Meta-analysis excluding KORA F3 & NPHS-II ¶     

 1st quartile (1 = 111 / 0 = 2,894) Reference    
 2nd quartile (1 = 157 / 0 = 2,847) 1.21 (0.85-1.72) 0.296 0.89 (0.56-1.40) 0.609 
 3rd quartile (1 = 248 / 0 = 2,755) 2.03 (1.60-2.57) 4.82*10-9 1.29 (1.00-1.67) 0.052 
 4th quartile (1 = 537 / 0 = 2,465) 4.66 (3.75-5.79) 3.54*10-44 2.15 (1.68-2.74) 1.14*10-9 
* The YFS Study is not included in these analyses due to low numbers of cases. 
† Numbers refer to the age- and sex-adjusted model  
‡ Adjusted for age and sex 
§ Adjusted for age, sex, HDL cholesterol, triglycerides, body mass index and hypertension 
|| Meta-analysis beta estimate (recalculated to an odds ratio and corresponding 95% CI) and P-values derived from a 
random effects model 
¶ Meta-analysis beta estimate (recalculated to an odds ratio and corresponding 95% CI) and P-values derived from a random 
effects model without KORA F3 and NPHS-II. These two studies did not ask participants to be fasting at their examination. 
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Supplementary Table 5: Logistic regression analysis of afamin (divided into quartiles) on incident type 2 
diabetes 
Study Type 2 Diabetes 

(1=yes / 0=no (=ref.) * 
OR (95% CI) † P OR (95% CI) ‡ P 

Bruneck Study 1st quartile (1 = 6 / 0 = 188) Reference    
Bruneck Study 2nd quartile (1 = 10 / 0 = 185) 1.69 (0.60-4.76) 0.320 1.55 (0.54-4.40) 0.412 
Bruneck Study 3rd quartile (1 = 14 / 0 = 169) 2.59 (0.97-6.91) 0.057 1.96 (0.70-5.49) 0.202 
Bruneck Study 4th quartile (1 = 22 / 0 = 139) 4.96 (1.96-12.57) 0.001 3.14 (1.11-8.89) 0.031 
SAPHIR Study 1st quartile (1 = 10 / 0 = 297) Reference    
SAPHIR Study 2nd quartile (1 = 10 / 0 = 285) 0.97 (0.40-2.37) 0.942 0.61 (0.24-1.54) 0.294 
SAPHIR Study 3rd quartile (1 = 17 / 0 = 282) 1.62 (0.72-3.62) 0.240 0.69 (0.29-1.64) 0.396 
SAPHIR Study 4th quartile (1 = 41 / 0 = 223) 5.05 (2.46-10.35) 9.71*10-6 1.61 (0.72-3.61) 0.250 
FamHS Study 1st quartile (1 = 9 / 0 = 280) Reference    
FamHS Study 2nd quartile (1 = 13 / 0 = 269) 1.28 (0.53-3.10) 0.591 1.03 (0.42-2.50) 0.955 
FamHS Study 3rd quartile (1 = 23 / 0 = 268) 2.13 (0.98-4.64) 0.056 1.46 (0.63-3.40) 0.383 
FamHS Study 4th quartile (1 = 38 / 0 = 219) 4.08 (1.93-8.63) 2.00*10-4 2.49 (1.08-5.79) 0.033 
YFS Study 1st quartile (1 = 4 / 0 = 486) Reference    
YFS Study 2nd quartile (1 = 10 / 0 = 478) 2.69 (0.84-8.65) 0.097 2.10 (0.64-6.90) 0.220 
YFS Study 3rd quartile (1 = 9 / 0 = 479) 2.44 (0.74-7.99) 0.141 1.39 (0.41-4.75) 0.600 
YFS Study 4th quartile (1 = 32 / 0 = 457) 8.89 (3.11-25.44) 4.57*10-5 2.84 (0.87-9.22) 0.083 
NPHS-II Study 1st quartile (1 = 17 / 0 = 611) Reference    
NPHS-II Study 2nd quartile (1 = 10 / 0 = 634) 0.57 (0.26-1.25) 0.157 0.42 (0.18-0.96) 0.041 
NPHS-II Study 3rd quartile (1 = 44 / 0 = 593) 2.68 (1.51-4.74) 7.18*10-4 1.24 (0.65-2.38) 0.509 
NPHS-II Study 4th quartile (1 = 64 / 0 = 553) 4.15 (2.40-7.18) 3.40*10-7 1.46 (0.77-2.78) 0.250 
KORA F4 Study 1st quartile (1 = 3 / 0 = 545) Reference    
KORA F4 Study 2nd quartile (1 = 11 / 0 = 507) 3.45 (0.95-12.48) 0.059 2.78 (0.76-10.16) 0.122 
KORA F4 Study 3rd quartile (1 = 24 / 0 = 487) 7.40 (2.21-24.84) 1.12*10-3 4.72 (1.37-16.29) 0.014 
KORA F4 Study 4th quartile (1 = 48 / 0 = 386) 17.05 (5.25-55.37) 2.37*10-6 8.31 (2.44-28.28) 7.09*10-4 
KORA F3 Study 1st quartile (1 = 3 / 0 = 654) Reference    
KORA F3 Study 2nd quartile (1 = 8 / 0 = 648) 2.66 (0.70-10.08) 0.150 1.70 (0.43-6.72) 0.447 
KORA F3 Study 3rd quartile (1 = 13 / 0 = 608) 4.20 (1.19-14.85) 0.026 2.44 (0.67-8.82) 0.176 
KORA F3 Study 4th quartile (1 = 28 / 0 = 549) 9.95 (3.00-32.99) 1.71*10-4 4.01 (1.13-14.28) 0.032 
CoLaus Study 1st quartile (1 = 7 / 0 = 352) Reference    
CoLaus Study 2nd quartile (1 = 5 / 0 = 376) 0.69 (0.22-2.19) 0.526 0.52 (0.16-1.68) 0.273 
CoLaus Study 3rd quartile (1 = 14 / 0 = 296) 2.29 (0.91-5.78) 0.079 1.54 (0.58-4.07) 0.381 
CoLaus Study 4th quartile (1 = 18 / 0 = 259) 3.27 (1.34-7.99) 0.009 1.69 (0.63-4.52) 0.295 

Meta-analysis including all studies §     

 1st quartile (1 = 59 / 0 = 3,413) Reference    
 2nd quartile (1 = 77 / 0 = 3,382) 1.31 (0.83-2.06) 0.251 1.00 (0.62-1.62) 0.996 
 3rd quartile (1 = 158 / 0 = 3,182) 2.56 (1.88-3.49) 2.25*10-9 1.47 (1.04-2.08) 0.030 
 4th quartile (1 = 291 / 0 = 2,785) 5.28 (3.83-7.27) 2.64*10-24 2.33 (1.61-3.36) 6.66*10-6 

Meta-analysis excluding KORA F3 & NPHS-II ||     

 1st quartile (1 = 39 / 0 = 2,148) Reference    
 2nd quartile (1 = 59 / 0 = 2,100) 1.43 (0.92-2.22) 0.112 1.12 (0.68-1.86) 0.652 
 3rd quartile (1 = 101 / 0 = 1,981) 2.40 (1.64-3.52) 7.47*10-6 1.51 (0.94-2.44) 0.087 
 4th quartile (1 = 199 / 0 = 1,683) 5.46 (3.63-8.22) 4.07*10-16 2.54 (1.66-3.89) 9.68*10-6 
* Numbers refer to the age and sex adjusted model 
† Adjusted for age and sex; ‡ Adjusted for age, sex, HDL cholesterol, triglycerides, body mass index and hypertension 
§ Meta-analysis beta estimate (recalculated to an odds ratio and corresponding 95% CI) and P-values derived from a random effects 
model; || Meta-analysis beta estimate (recalculated to an odds ratio and corresponding 95% CI) and P-values derived from a random 
effects model without KORA F3 and NPHS-II. These two studies did not ask participants to be fasting at their examination. 
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Supplementary Table 6: Linear regression analysis of afamin (increment 10 mg/L) on type 2 diabetes-
related phenotypes at the baseline investigation excluding those with type 2 diabetes at baseline. 

 Adjustment for age and sex Extended adjustment 
Parameter / Study (n individuals) ß (95% CI) * P ß (95% CI) † P 
Ln-HbA1c     

Bruneck Study (n=733) 0.006 (0.002-0.010) 4.50*10-3 0.003 (-0.001-0.008) 0.166 
SAPHIR Study (n=1,425) 0.007 (0.004-0.009) 3.92*10-9 0.004 (0.002-0.007) 1.65*10-3 
KORA F3 Study (n=2,869) 0.005 (0.003-0.006) 3.80*10-13 0.002 (0.0003-0.003) 0.018 
KORA F4 Study (n=2,801) 0.008 (0.007-0.009) 1.01*10-31 0.005 (0.003-0.006) 8.37*10-10 
CoLaus Study --- --- --- --- 
NPHS-II Study --- --- --- --- 
YFS Study --- --- --- --- 
FamHS Study --- --- --- --- 

Meta-analysis ‡ 0.006 (0.004-0.008) 4.41*10-10 0.003 (0.002-0.005) 3.09*10-4 
Ln-HOMA Index     

Bruneck Study (n=733) 0.144 (0.121-0.168) 1.46*10-33 0.082 (0.056-0.109) 1.11*10-9 
SAPHIR Study (n=1,441) 0.249 (0.231-0.268) 3.90*10-157 0.152 (0.134-0.171) 6.37*10-59 
FamHS Study (n=1,706) 0.171 (0.151-0.190) 1.37*10-64 0.104 (0.084-0.124) 3.40*10-25 
YFS Study (n=2,252) 0.159 (0.145-0.173) 1.32*10-97 0.079 (0.064-0.093) 8.66*10-26 
KORA F4 Study (n=2,751) 0.222 (0.202-0.243) 1.71*10-101 0.134 (0.112-0.156) 7.21*10-33 
CoLaus Study (n=4,270) 0.176 (0.165-0.187) 8.77*10-210 0.111 (0.100-0.122) 1.05*10-91 
KORA F3 Study --- --- --- --- 
NPHS-II Study --- --- --- --- 

Meta-analysis ‡ 0.187 (0.158-0.216) 3.00*10-36 0.110 (0.089-0.132) 1.37*10-23 
Ln-Insulin     

Bruneck Study (n=733) 0.129 (0.106-0.151) 8.82*10-30 0.071 (0.046-0.097) 2.74*10-8 
SAPHIR Study (n=1,441) 0.228 (0.211-0.245) 2.77*10-150 0.136 (0.119-0.154) 1.35*10-54 
KORA F3 Study --- --- --- --- 
KORA F4 Study (n=2,754) 0.203 (0.183-0.222) 3.34*10-90 0.121 (0.100-0.143) 9.44*10-29 
CoLaus Study (n=4,270) 0.164 (0.153-0.174) 2.51*10-202 0.104 (0.094-0.115) 2.47*10-89 
NPHS-II Study --- --- --- --- 
YFS Study (n=2,252) 0.153 (0.140-0.166) 1.81*10-102 0.077 (0.063-0.090) 1.28*10-27 
FamHS Study (n=1,706) 0.155 (0.136-0.174) 4.29*10-59 0.094 (0.075-0.113) 1.67*10-22 

Meta-analysis ‡ 0.172 (0.146-0.198) 3.32*10-39 0.101 (0.083-0.120) 1.51*10-26 
Ln-Glucose     

Bruneck Study (n=733) 0.016 (0.011-0.021) 7.21*10-10 0.011 (0.005-0.017) 3.38*10-4 
SAPHIR Study (n=1,442) 0.022 (0.018-0.025) 2.39*10-31 0.016 (0.012-0.020) 1.84*10-13 
KORA F3 Study --- --- --- --- 
KORA F4 Study (n=2,779) 0.020 (0.017-0.022) 6.04*10-68 0.012 (0.010-0.015) 1.01*10-21 
CoLaus Study (n=4,270) 0.012 (0.011-0.014) 3.08*10-49 0.007 (0.005-0.009) 3.73*10-14 
NPHS-II Study --- --- --- --- 
YFS Study (n=2,253) 0.006 (0.004-0.008) 2.64*10-07 0.002 (-0.0004-0.005) 0.108 
FamHS Study (n=1,706) 0.015 (0.012-0.018) 8.30*10-24 0.010 (0.006-0.013) 8.90*10-9 

Meta-analysis ‡ 0.015 (0.010-0.020) 4.68*10-10 0.009 (0.006-0.013) 7.48*10-7 
N refer to the age and sex adjusted model 
* Adjusted for age and sex 
† Adjusted for age, sex, HDL cholesterol, triglycerides, body mass index and hypertension 
‡ Meta-analysis beta estimate, 95% CI and P-values derived from a random effects model 
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Supplementary Table 7: Logistic regression analysis of afamin (increment 10 mg/L) on incident type 

2 diabetes in 6 out of 8 cohorts additionally including glucose concentrations. 

Study  Type 2 Diabetes  
(1 = yes / 0 = no (=ref.) 

OR (95% CI) * P OR (95% CI) † P 

Bruneck Study (1=52 / 0=681) 1.26 (0.98-1.62) 0.069 1.21 (0.94-1.56) 0.144 

YFS Study (1=55 / 0=1,837) 1.34 (1.11-1.61) 0.002 1.31 (1.08-1.58) 0.005 

FamHS Study (1=79 / 0=978) 1.28 (0.09-1.50) 0.002 1.21 (1.03-1.42) 0.021 

KORA F4 Study (1=71 / 0=1,900) 1.35 (1.17-1.57) 6.19*10-5 1.27 (1.09-1.49) 0.003 

CoLaus Study (1=44 / 0=1,283) 1.15 (0.94-1.40) 0.166 1.07 (0.87-1.31) 0.531 

SAPHIR Study (1=72 / 0=1,075) 1.14 (0.93-1.41) 0.201 1.09 (0.89-1.35) 0.398 

Meta-analysis (1=373 / 0=7,754) 1.27 (1.18-1.36) 5.09*10-10 1.21 (1.11-1.30) 2.87*10-6 
* Adjusted for age, sex, HDL cholesterol, triglycerides, BMI, hypertension and glucose concentrations ≥100 mg/dL (100-
125 mg/dL vs. <100 mg/dL = reference) 
† Adjusted for age, sex, HDL cholesterol, triglycerides, BMI, hypertension and logarithmized glucose concentrations 
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Supplementary Table 8: Reclassification of individuals into low, medium and high risk categories for 

development of type 2 diabetes within the study period in the KORA F4 Study (median follow-up 6.4 

years) when additionally considering afamin in the risk model. The baseline model includes the risk 

factors or parameters age, sex, HDL cholesterol, triglycerides, BMI, hypertension and glucose 

concentrations ≥100 mg/dL (100-125 mg/dL vs. <100 mg/dL = reference) and family history of 

diabetes. 

Individuals with incident type 2 diabetes (n=107) 
 Baseline model plus afamin 

Baseline model Total <5% risk 5-24% risk >=25% risk 

<5% risk 14 10 (71.4) 4 (28.6) * 0 (0.0) * 

5-24% risk 62 2 (3.2) † 46 (74.1) 14 (22.6) * 

>=25% risk 31 0 (0.0) † 3 (9.7) † 28 (90.3) 

Total 107 12 53 42 

* Moved to higher risk which is correctly reclassified (light gray), n =18; † Moved to lower risk which is 

wrongly reclassified (dark gray), n =5; stayed in the same risk category (medium grey), n=84; NRI 
0.121 (95%CI 0.037-0.206), p=0.005. 

 

Individuals without incident type 2 diabetes (n=1,563) 
 Baseline model plus afamin 

Baseline model Total <5% risk 5-24% risk >=25% risk 

<5% risk 1,137 1,097 (96.5) 39 (3.4) † 1 (0.09) † 

5-24% risk 355 61 (17.2) * 272 (76.6) 22 (6.2) † 

>=25% risk 71 0 (0.0) * 20 (28.2) * 51 (71.8) 

Total 1,563 1,158 331 74 

* Moved to lower risk category which is correctly reclassified (light gray), n =81; † Moved to higher risk 

category which is wrongly reclassified (dark gray), n=62; stayed in the same risk category (medium 

grey); n = 1,420; NRI 0.012 (95%CI -0.003-0.027), p=0.115. 

Values are presented as n (row percent). 

Categorical net reclassification improvement (NRI) in this table is calculated for 107 individuals with 

and for 1,563 individuals without type 2 diabetes. Overall NRI for the total group: 0.134 (95%CI 0.044-

0.223), p=0.003. 
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Supplementary Figure 1: Nonlinear P-Spline for afamin concentrations (per 10 mg/L) on prediabetes in the age and 
sex-adjusted logistic regression model in KORA F4. The dashed lines correspond to 95% confidence bands. 

 

Supplementary Figure 2: Nonlinear P-Spline for afamin concentrations (per 10 mg/L) on prevalent type 2 diabetes in 
the age- and sex-adjusted logistic regression model in KORA F4. The dashed lines correspond to 95% confidence 
bands. 
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Supplementary Figure 3: Nonlinear P-Spline for afamin concentrations (per 10 mg/L) on incident type 2 diabetes in 
the age- and sex-adjusted logistic regression model in KORA F4. The dashed lines correspond to 95% confidence 
bands. 

 

Supplementary Figure 4: Nonlinear P-Spline for afamin concentrations (per 10 mg/L) on logarithmized HbA1c in the 
age- and sex-adjusted linear regression model in KORA F4 in those without type 2 diabetes at baseline. The dashed 
lines correspond to 95% confidence bands. 
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Supplementary Figure 5: Nonlinear P-Spline for afamin concentrations (per 10 mg/L) on logarithmized HOMA-IR 
in the age- and sex-adjusted linear regression model in KORA F4 in those without type 2 diabetes at baseline. 
The dashed lines correspond to 95% confidence bands 

 

Supplementary Figure 6: Nonlinear P-Spline for afamin concentrations (per 10 mg/L) on logarithmized whole-
body ISI(composite) in the age- and sex-adjusted linear regression model in KORA F4 in those without type 2 
diabetes at baseline. The dashed lines correspond to 95% confidence bands 
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Supplementary Figure 7: Forest plot illustrating the association of afamin (increment 10 mg/L) with 

logarithmized insulin resistance index (HOMA-IR) (extended adjustment model), based on a random 

effects (RE) model for all 6 studies with available HOMA-IR measurements. Beta estimates and 95% 

confidence intervals are shown for each study and the pooled analysis. 
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Supplementary Figure 8: Reclassification of individuals (70 cases with type 2 diabetes and 422 

controls) predicted to be at intermediate risk (5-24%) for the development of type 2 diabetes during 

follow-up (median 6.4 years) based on an additional inclusion of afamin concentrations in the KORA 

F4 extended risk model as compared to a risk model including age, sex and major metabolic risk 

factors or parameters (HDL cholesterol, triglycerides, BMI, hypertension, and fasting plasma glucose 

concentrations ≥100 mg/dL (100-125 mg/dL vs. <100 mg/dL=reference)). Adding afamin to the risk 

model resulted in a reclassification of 30.0% of patients and 26.5% of controls. Proportions are shown 

for 1) type 2 diabetes cases (70.0%) and controls (73.5%) that stayed in the intermediate risk group 

(illustrated in grey), and 2) type 2 diabetes cases that were correctly reclassified and thus moved to a 

higher risk category (24.3%) and controls that moved to a lower risk category (19.9%), respectively 

(illustrated in green) and 3) type 2 diabetes cases that were wrongly reclassified and thus moved to a 

lower risk category (5.7%) and controls that moved to a higher risk category (6.6%), respectively 

(illustrated in black).  
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Supplementary Figure 9: Reclassification of individuals (62 cases with type 2 diabetes and 355 

controls) predicted to be at intermediate risk (5-24%) for the development of type 2 diabetes during 

follow-up (median 6.4 years) based on an additional inclusion of afamin concentrations in the KORA 

F4 extended risk model as compared to a risk model including age, sex and major metabolic risk 

factors or parameters (HDL cholesterol, triglycerides, BMI, hypertension, plasma glucose 

concentrations ≥100 mg/dL (100-125 mg/dL vs. <100 mg/dL=reference) and family history of 

diabetes). Adding afamin to the risk model resulted in a reclassification of 25.8% of patients and 

23.4% of controls. Proportions are shown for 1) type 2 diabetes cases (74.1%) and controls (76.6%) 

that stayed in the intermediate risk group (illustrated in grey), and 2) type 2 diabetes cases that were 

correctly reclassified and thus moved to a higher risk group (22.6%) and controls that moved to a 

lower risk group (17.2%), respectively (illustrated in green) and 3) type 2 diabetes cases that were 

wrongly reclassified and thus moved to a lower risk group (3.2%) and controls that moved to a higher 

risk group (6.2%), respectively (illustrated in black). 
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