66 research outputs found

    EUREC⁎A

    Get PDF
    The science guiding the EURECA campaign and its measurements is presented. EURECA comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EURECA marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EURECA explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EURECA's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement

    EUREC⁎A

    Get PDF
    The science guiding the EURECA campaign and its measurements is presented. EURECA comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EURECA marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EURECA explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EURECA's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement

    An initial-value problem for testing numerical models of the global shallow water equations

    No full text
    We present an initial-value problem for testing numerical models of the global shallow-water equations. This new test case is designed to address some of the difficulties that have recently been uncovered in the canonical test case suite of Williamson et al. The new test case is simple to set up, yet able to generate a complex and realistic flow. The initial condition consists of an analytically specified, balanced, barotropically unstable, mid-latitude jet. to which a simple perturbation is added to initiate the instability. The evolution is comprised of an early adjustment phase dominated by fast. gravity wave dynamics. and a later development characterized by the slow. nearly balanced roll-up of the vorticity field associated with the initial jet.We compute solutions to this problem with a spectral transform model to numerical convergence, in the sense that we refine the spatial and temporal resolution until no changes can be visually detected in global contour plots of the Solution fields. We also quantity the convergence with standard norms. We validate these solutions by recomputing them with a different model, and show that the solutions thus obtained converge to those of the original model. This new test is intended to serve as a complement to the Williamson et al. suite. and should be of particular interest in that it involves the formation of complicated dynamical features similar to those that arise in numerical weather prediction and climate models.</p

    Identification and Characterization of Latex-Specific Proteins in Opium Poppy

    No full text

    ServiceX A Distributed, Caching, Columnar Data Delivery Service

    No full text
    We will describe a component of the Intelligent Data Delivery Service being developed in collaboration with IRIS-HEP and the LHC experiments. ServiceX is an experiment-agnostic service to enable on-demand data delivery specifically tailored for nearly-interactive vectorized analysis. This work is motivated by the data engineering challenges posed by HL-LHC data volumes and the increasing popularity of python and Spark-based analysis workflows. ServiceX gives analyzers the ability to query events by dataset metadata. It uses containerized transformations to extract just the data required for the analysis. This operation is colocated with the data to avoid transferring unnecessary branches over the WAN. Simple filtering operations are supported to further reduce the amount of data transferred. Transformed events are cached in a columnar datastore to accelerate delivery of subsequent similar requests. ServiceX will learn commonly related columns and automatically include them in the transformation to increase the potential for cache hits by other users. Selected events are streamed to the analysis system using an efficient wire protocol that can be readily consumed by a variety of computational frameworks. This reduces time-to-insight for physics analysis by delegating to ServiceX the complexity of event selection, slimming, reformatting, and streaming

    ServiceX A Distributed, Caching, Columnar Data Delivery Service

    Get PDF
    We will describe a component of the Intelligent Data Delivery Service being developed in collaboration with IRIS-HEP and the LHC experiments. ServiceX is an experiment-agnostic service to enable on-demand data delivery specifically tailored for nearly-interactive vectorized analysis. This work is motivated by the data engineering challenges posed by HL-LHC data volumes and the increasing popularity of python and Spark-based analysis workflows. ServiceX gives analyzers the ability to query events by dataset metadata. It uses containerized transformations to extract just the data required for the analysis. This operation is colocated with the data to avoid transferring unnecessary branches over the WAN. Simple filtering operations are supported to further reduce the amount of data transferred. Transformed events are cached in a columnar datastore to accelerate delivery of subsequent similar requests. ServiceX will learn commonly related columns and automatically include them in the transformation to increase the potential for cache hits by other users. Selected events are streamed to the analysis system using an efficient wire protocol that can be readily consumed by a variety of computational frameworks. This reduces time-to-insight for physics analysis by delegating to ServiceX the complexity of event selection, slimming, reformatting, and streaming
    • 

    corecore