270 research outputs found

    On spin-rotation contribution to nuclear spin conversion in C_{3v}-symmetry molecules. Application to CH_3F

    Get PDF
    The symmetrized contribution of E-type spin-rotation interaction to conversion between spin modifications of E- and A_1-types in molecules with C_{3v}-symmetry is considered. Using the high-J descending of collisional broadening for accidental rotational resonances between these spin modifications, it was possible to co-ordinate the theoretical description of the conversion with (updated) experimental data for two carbon-substituted isotopes of fluoromethane. As a result, both E-type spin-rotation constants are obtained. They are roughly one and a half times more than the corresponding constants for (deutero)methane.Comment: 13 pages with single-spacing, REVTeX, no figures, accepted for publication in <J. Phys. B

    Onsala Space Observatory – IVS Technology Development Center Activities during 2017–2018

    Get PDF
    We give a brief overview of the technical development related to geodetic VLBI done during 2017 and 2018 at the Onsala Space Observatory

    Perioperative validation of localisation of the mental foramen

    Full text link

    PPAR-α and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal

    Get PDF
    Many acute and chronic anaemias, including haemolysis, sepsis and genetic bone marrow failure diseases such as Diamond–Blackfan anaemia, are not treatable with erythropoietin (Epo), because the colony-forming unit erythroid progenitors (CFU-Es) that respond to Epo are either too few in number or are not sensitive enough to Epo to maintain sufficient red blood cell production. Treatment of these anaemias requires a drug that acts at an earlier stage of red cell formation and enhances the formation of Epo-sensitive CFU-E progenitors. Recently, we showed that glucocorticoids specifically stimulate self-renewal of an early erythroid progenitor, burst-forming unit erythroid (BFU-E), and increase the production of terminally differentiated erythroid cells. Here we show that activation of the peroxisome proliferator-activated receptor α (PPAR-α) by the PPAR-α agonists GW7647 and fenofibrate synergizes with the glucocorticoid receptor (GR) to promote BFU-E self-renewal. Over time these agonists greatly increase production of mature red blood cells in cultures of both mouse fetal liver BFU-Es and mobilized human adult CD34+ peripheral blood progenitors, with a new and effective culture system being used for the human cells that generates normal enucleated reticulocytes. Although Ppara−/− mice show no haematological difference from wild-type mice in both normal and phenylhydrazine (PHZ)-induced stress erythropoiesis, PPAR-α agonists facilitate recovery of wild-type but not Ppara−/− mice from PHZ-induced acute haemolytic anaemia. We also show that PPAR-α alleviates anaemia in a mouse model of chronic anaemia. Finally, both in control and corticosteroid-treated BFU-E cells, PPAR-α co-occupies many chromatin sites with GR; when activated by PPAR-α agonists, additional PPAR-α is recruited to GR-adjacent sites and presumably facilitates GR-dependent BFU-E self-renewal. Our discovery of the role of PPAR-α agonists in stimulating self-renewal of early erythroid progenitor cells suggests that the clinically tested PPAR-α agonists we used may improve the efficacy of corticosteroids in treating Epo-resistant anaemias.United States. Defense Advanced Research Projects Agency (Grant HR0011-14-2-0005)United States. Army Medical Research and Materiel Command (Grant W81WH-12-1-0449)National Heart, Lung, and Blood Institute (Grant 2 P01 HL032262-25

    Accelerated Hydrolysis of Aspirin Using Alternating Magnetic Fields

    Get PDF
    The major problem of current drug-based therapy is selectivity. As in other areas of science, a combined approach might improve the situation decisively. The idea is to use the pro-drug principle together with an alternating magnetic field as physical stimulus, which can be applied in a spatially and temporarily controlled manner. As a proof of principle, the neutral hydrolysis of aspirin in physiological phosphate buffer of pH 7.5 at 40 °C was chosen. The sensor and actuator system is a commercially available gold nanoparticle (NP) suspension which is approved for animal usage, stable in high concentrations and reproducibly available. Applying the alternating magnetic field of a conventional NMR magnet system accelerated the hydrolysis of aspirin in solution

    Continuation of fluoropyrimidine treatment with S-1 after cardiotoxicity on capecitabine- or 5-fluorouracil-based therapy in patients with solid tumours : a multicentre retrospective observational cohort study

    Get PDF
    Publisher Copyright: © 2022 The Author(s)Background: Capecitabine- or 5-fluorouracil (5-FU)-based chemotherapy is widely used in many solid tumours, but is associated with cardiotoxicity. S-1 is a fluoropyrimidine with low rates of cardiotoxicity, but evidence regarding the safety of switching to S-1 after 5-FU- or capecitabine-associated cardiotoxicity is scarce. Patients and methods: This retrospective study (NCT04260269) was conducted at 13 centres in 6 countries. The primary endpoint was recurrence of cardiotoxicity after switch to S-1-based treatment due to 5-FU- or capecitabine-related cardiotoxicity: clinically meaningful if the upper boundary of the 95% confidence interval (CI; by competing risk) is not including 15%. Secondary endpoints included cardiac risk factors, diagnostic work-up, treatments, outcomes, and timelines of cardiotoxicity. Results: Per protocol, 200 patients, treated between 2011 and 2020 [median age 66 years (range 19-86); 118 (59%) males], were included. Treatment intent was curative in 145 (73%). Initial cardiotoxicity was due to capecitabine (n = 170), continuous infusion 5-FU (n = 22), or bolus 5-FU (n = 8), which was administered in combination with other chemotherapy, targeted agents, or radiotherapy in 133 patients. Previous cardiovascular comorbidities were present in 99 (50%) patients. Cardiotoxic events (n = 228/200) included chest pain (n = 125), coronary syndrome/infarction (n = 69), arrhythmia (n = 22), heart failure/cardiomyopathy (n = 7), cardiac arrest (n = 4), and malignant hypertension (n = 1). Cardiotoxicity was severe or life-threatening in 112 (56%) patients and led to permanent capecitabine/5-FU discontinuation in 192 (96%). After switch to S-1, recurrent cardiotoxicity was observed in eight (4%) patients (95% CI 2.02-7.89, primary endpoint met). Events were limited to grade 1-2 and occurred at a median of 16 days (interquartile range 7-67) from therapy switch. Baseline ischemic heart disease was a risk factor for recurrent cardiotoxicity (odds ratio 6.18, 95% CI 1.36-28.11). Conclusion: Switching to S-1-based therapy is safe and feasible after development of cardiotoxicity on 5-FU- or capecitabine-based therapy and allows patients to continue their pivotal fluoropyrimidine-based treatment.Peer reviewe

    SMG1 and NIK regulate apoptosis induced by Smac mimetic compounds

    Get PDF
    Smac mimetic compounds (SMCs) are experimental small molecules that induce tumour necrosis factor alpha (TNFα)-dependent cancer cell death by targeting the inhibitor of apoptosis proteins. However, many cancer cell lines are resistant to SMC-mediated apoptosis despite the presence of TNFα. To add insight into the mechanism of SMC-resistance, we used functional siRNA-based kinomic and focused chemical screens and identified suppressor of morphogenesis in genitalia-1 (SMG1) and NF-κB-inducing kinase (NIK) as novel protective factors. Both SMG1 and NIK prevent SMC-mediated apoptosis likely by maintaining FLICE inhibitory protein (c-FLIP) levels to suppress caspase-8 activation. In SMC-resistant cells, the accumulation of NIK upon SMC treatment enhanced the activity of both the classical and alternative nuclear factor-κB pathways, and increased c-FLIP mRNA levels. In parallel, persistent SMG1 expression in SMC-resistant cells repressed SMC-mediated TNFα-induced JNK activation and c-FLIP levels were sustained. Importantly, SMC-resistance is overcome by depleting NIK and SMG1, which appear to facilitate the downregulation of c-FLIP in response to SMC and TNFα treatment, leading to caspase-8-dependent apoptosis. Collectively, these data show that SMG1 and NIK function as critical repressors of SMC-mediated apoptosis by potentially converging on the regulation of c-FLIP metabolism

    Altered translation of GATA1 in Diamond-Blackfan anemia

    Get PDF
    Ribosomal protein haploinsufficiency occurs in diverse human diseases including Diamond-Blackfan anemia (DBA)[superscript 1, 2], congenital asplenia[superscript 3] and T cell leukemia[superscript 4]. Yet, how mutations in genes encoding ubiquitously expressed proteins such as these result in cell-type– and tissue-specific defects remains unknown[superscript 5]. Here, we identify mutations in GATA1, encoding the critical hematopoietic transcription factor GATA-binding protein-1, that reduce levels of full-length GATA1 protein and cause DBA in rare instances. We show that ribosomal protein haploinsufficiency, the more common cause of DBA, can lead to decreased GATA1 mRNA translation, possibly resulting from a higher threshold for initiation of translation of this mRNA in comparison with other mRNAs. In primary hematopoietic cells from patients with mutations in RPS19, encoding ribosomal protein S19, the amplitude of a transcriptional signature of GATA1 target genes was globally and specifically reduced, indicating that the activity, but not the mRNA level, of GATA1 is decreased in patients with DBA associated with mutations affecting ribosomal proteins. Moreover, the defective hematopoiesis observed in patients with DBA associated with ribosomal protein haploinsufficiency could be partially overcome by increasing GATA1 protein levels. Our results provide a paradigm by which selective defects in translation due to mutations affecting ubiquitous ribosomal proteins can result in human disease.National Institutes of Health (U.S.) (Grant P01 HL32262)National Institutes of Health (U.S.) (Grant U54 HG003067-09
    • …
    corecore