34 research outputs found

    Characterization of BTBD1 and BTBD2, two similar BTB-domain-containing Kelch-like proteins that interact with Topoisomerase I

    Get PDF
    BACKGROUND: Two-hybrid screening for proteins that interact with the core domain of human topoisomerase I identified two novel proteins, BTBD1 and BTBD2, which share 80% amino acid identities. RESULTS: The interactions were confirmed by co-precipitation assays demonstrating the physical interaction of BTBD1 and BTBD2 with 100 kDa topoisomerase I from HeLa cells. Deletion mapping using two-hybrid and GST-pulldown assays demonstrated that less than the C-terminal half of BTBD1 is sufficient for binding topoisomerase I. The topoisomerase I sequences sufficient to bind BTBD2 were mapped to residues 215 to 329. BTBD2 with an epitope tag localized to cytoplasmic bodies. Using truncated versions that direct BTBD2 and TOP1 to the same cellular compartment, either the nucleus or the cytoplasm, co-localization was demonstrated in co-transfected Hela cells. The supercoil relaxation and DNA cleavage activities of topoisomerase I in vitro were affected little or none by co-incubation with BTBD2. Northern analysis revealed only a single sized mRNA for each BTBD1 and BTBD2 in all human tissues tested. Characterization of BTBD2 mRNA revealed a 255 nucleotide 90% GC-rich region predicted to encode the N-terminus. BTBD1 and BTBD2 are widely if not ubiquitously expressed in human tissues, and have two paralogs as well as putative orthologs in C. elegans and D. melanogaster. CONCLUSIONS: BTBD1 and BTBD2 belong to a small family of uncharacterized proteins that appear to be specific to animals. Epitope-tagged BTBD2 localized to cytoplasmic bodies. The characterization of BTBD1 and BTBD2 and their interaction with TOP1 is underway

    Imbalance of neurotrophin receptor isoforms TrkB-FL/TrkB-T1 induces neuronal death in excitotoxicity

    Get PDF
    A better understanding of the mechanisms underlying neuronal death in cerebral ischemia is required for the development of stroke therapies. Here we analyze the contribution of the tropomyosin-related kinase B (TrkB) neurotrophin receptor to excitotoxicity, a primary pathological mechanism in ischemia, which is induced by overstimulation of glutamate receptors of the N-methyl-D-aspartate type. We demonstrate a significant modification of TrkB expression that is strongly associated with neurodegeneration in models of ischemia and in vitro excitotoxicity. Two mechanisms cooperate for TrkB dysregulation: (1) calpain-processing of full-length TrkB (TrkB-FL), high-affinity receptor for brain-derived neurotrophic factor, which produces a truncated protein lacking the tyrosine-kinase domain and strikingly similar to the inactive TrkB-T1 isoform and (2) reverse regulation of the mRNA of these isoforms. Collectively, excitotoxicity results in a decrease of TrkB-FL, the production of truncated TrkB-FL and the upregulation of TrkB-T1. A similar neuro-specific increase of the TrkB-T1 isoform is also observed in stroke patients. A lentivirus designed for both neuro-specific TrkB-T1 interference and increased TrkB-FL expression allows recovery of the TrkB-FL/TrkB-T1 balance and protects neurons from excitotoxic death. These data implicate a combination of TrkB-FL downregulation and TrkB-T1 upregulation as significant causes of neuronal death in excitotoxicity, and reveal novel targets for the design of stroke therapies

    A decade from discovery to therapy: Lingo-1, the dark horse in neurological and psychiatric disorders

    Full text link

    LINGO1 and LINGO2 variants are associated with essential tremor and Parkinson disease.

    Get PDF
    Genetic variation in the leucine-rich repeat and Ig domain containing 1 gene (LINGO1) was recently associated with an increased risk of developing essential tremor (ET) and Parkinson disease (PD). Herein, we performed a comprehensive study of LINGO1 and its paralog LINGO2 in ET and PD by sequencing both genes in patients (ET, n=95; PD, n=96) and by examining haplotype-tagging single-nucleotide polymorphisms (tSNPs) in a multicenter North American series of patients (ET, n=1,247; PD, n= 633) and controls (n=642). The sequencing study identified six novel coding variants in LINGO1 (p.S4C, p.V107M, p.A277T, p.R423R, p.G537A, p.D610D) and three in LINGO2 (p.D135D, p.P217P, p.V565V), however segregation analysis did not support pathogenicity. The association study employed 16 tSNPs at the LINGO1 locus and 21 at the LINGO2 locus. One variant in LINGO1 (rs9652490) displayed evidence of an association with ET (odds ratio (OR) =0.63; P=0.026) and PD (OR=0.54; P=0.016). Additionally, four other tSNPs in LINGO1 and one in LINGO2 were associated with ET and one tSNP in LINGO2 associated with PD (P<0.05). Further analysis identified one tSNP in LINGO1 and two in LINGO2 which influenced age at onset of ET and two tSNPs in LINGO1 which altered age at onset of PD (P<0.05). Our results support a role for LINGO1 and LINGO2 in determining risk for and perhaps age at onset of ET and PD. Further studies are warranted to confirm these findings and to determine the pathogenic mechanisms involved
    corecore