90 research outputs found

    Thermochemical stability: A comparison between experimental and predicted data

    Get PDF
    The first step to be performed during the development of a new industrial process should be the assessment of all hazards associated to the involved compounds. Particularly, the knowledge of all substances thermochemical parameters is a primary feature for such a hazard evaluation. CHETAH (CHEmical Thermodynamic And Hazard evaluation) is a prediction software suitable for calculating potential hazards of chemicals, mixtures or a single reaction that, using only the structure of the involved molecules and Benson's group contribution method, is able to calculate heats of formation, entropies, Gibbs free energies and reaction enthalpies. Because of its ability to predict the potential hazards of a material or mixture, CHETAH is part of the so-called \u201cdesktop methods\u201d for early stage chemical safety analysis. In this work, CHETAH software has been used to compile a complete risk database reporting heats of decomposition and Energy Release Potential (ERP) for 342 common use chemicals. These compounds have been gathered into classes depending on their functional groups and similarities in their thermal behavior. Calculated decomposition enthalpies for each of the compounds have also been compared with experimental data obtained with either thermoanalytic or calorimetric techniques (Differential Scanning Calorimeter \u2013 DSC \u2013 and Accelerating Rate Calorimeter \u2013 ARC)

    Assessing the role of genome-wide DNA methylation between smoking and risk of lung cancer using repeated measurements: the HUNT Study

    Get PDF
    Background - It is unclear if smoking-related DNA methylation represents a causal pathway between smoking and risk of lung cancer. We sought to identify novel smoking-related DNA methylation sites in blood, with repeated measurements, and to appraise the putative role of DNA methylation in the pathway between smoking and lung cancer development. Methods - We derived a nested case-control study from the Trøndelag Health Study (HUNT), including 140 incident patients who developed lung cancer during 2009–13 and 140 controls. We profiled 850 K DNA methylation sites (Illumina Infinium EPIC array) in DNA extracted from blood that was collected in HUNT2 (1995–97) and HUNT3 (2006–08) for the same individuals. Epigenome-wide association studies (EWAS) were performed for a detailed smoking phenotype and for lung cancer. Two-step Mendelian randomization (MR) analyses were performed to assess the potential causal effect of smoking on DNA methylation as well as of DNA methylation (13 sites as putative mediators) on risk of lung cancer. Results - The EWAS for smoking in HUNT2 identified associations at 76 DNA methylation sites (P –8), including 16 novel sites. Smoking was associated with DNA hypomethylation in a dose-response relationship among 83% of the 76 sites, which was confirmed by analyses using repeated measurements from blood that was collected at 11 years apart for the same individuals. Two-step MR analyses showed evidence for a causal effect of smoking on DNA methylation but no evidence for a causal link between DNA methylation and the risk of lung cancer. Conclusions - DNA methylation modifications in blood did not seem to represent a causal pathway linking smoking and the lung cancer risk

    Genome-Wide Association Study of Non-Alcoholic Fatty Liver Disease using Electronic Health Records

    Get PDF
    Genome‐wide association studies (GWAS) have identified several risk loci for nonalcoholic fatty liver disease (NAFLD). Previous studies have largely relied on small sample sizes and have assessed quantitative traits. We performed a case‐control GWAS in the UK Biobank using recorded diagnosis of NAFLD based on diagnostic codes recommended in recent consensus guidelines. We performed a GWAS of 4,761 cases of NAFLD and 373,227 healthy controls without evidence of NAFLD. Sensitivity analyses were performed excluding other co‐existing hepatic pathology, adjusting for body mass index (BMI) and adjusting for alcohol intake. A total of 9,723,654 variants were assessed by logistic regression adjusted for age, sex, genetic principal components, and genotyping batch. We performed a GWAS meta‐analysis using available summary association statistics. Six risk loci were identified (P < 5*10(−8)) (apolipoprotein E [APOE], patatin‐like phospholipase domain containing 3 [PNPLA3, transmembrane 6 superfamily member 2 [TM6SF2], glucokinase regulator [GCKR], mitochondrial amidoxime reducing component 1 [MARC1], and tribbles pseudokinase 1 [TRIB1]). All loci retained significance in sensitivity analyses without co‐existent hepatic pathology and after adjustment for BMI. PNPLA3 and TM6SF2 remained significant after adjustment for alcohol (alcohol intake was known in only 158,388 individuals), with others demonstrating consistent direction and magnitude of effect. All six loci were significant on meta‐analysis. Rs429358 (P = 2.17*10(−11)) is a missense variant within the APOE gene determining ϵ4 versus ϵ2/ϵ3 alleles. The ϵ4 allele of APOE offered protection against NAFLD (odds ratio for heterozygotes 0.84 [95% confidence interval 0.78‐0.90] and homozygotes 0.64 [0.50‐0.79]). Conclusion: This GWAS replicates six known NAFLD‐susceptibility loci and confirms that the ϵ4 allele of APOE is associated with protection against NAFLD. The results are consistent with published GWAS using histological and radiological measures of NAFLD, confirming that NAFLD identified through diagnostic codes from consensus guidelines is a valid alternative to more invasive and costly approaches

    Population-based estimates of the prevalence of FMR1 expansion mutations in women with early menopause and primary ovarian insufficiency

    Get PDF
    PURPOSE: Primary ovarian insufficiency before the age of 40 years affects 1% of the female population and is characterized by permanent cessation of menstruation. Genetic causes include FMR1 expansion mutations. Previous studies have estimated mutation prevalence in clinical referrals for primary ovarian insufficiency, but these are likely to be biased as compared with cases in the general population. The prevalence of FMR1 expansion mutations in early menopause (between the ages of 40 and 45 years) has not been published. METHODS: We studied FMR1 CGG repeat number in more than 2,000 women from the Breakthrough Generations Study who underwent menopause before the age of 46 years. We determined the prevalence of premutation (55–200 CGG repeats) and intermediate (45–54 CGG repeats) alleles in women with primary ovarian insufficiency (n = 254) and early menopause (n = 1,881). RESULTS: The prevalence of the premutation was 2.0% in primary ovarian insufficiency, 0.7% in early menopause, and 0.4% in controls, corresponding to odds ratios of 5.4 (95% confidence interval = 1.7–17.4; P = 0.004) for primary ovarian insufficiency and 2.0 (95% confidence interval = 0.8–5.1; P = 0.12) for early menopause. Combining primary ovarian insufficiency and early menopause gave an odds ratio of 2.4 (95% confidence interval = 1.02–5.8; P = 0.04). Intermediate alleles were not significant risk factors for either early menopause or primary ovarian insufficiency. CONCLUSION: FMR1 premutations are not as prevalent in women with ovarian insufficiency as previous estimates have suggested, but they still represent a substantial cause of primary ovarian insufficiency and early menopause

    Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation

    Get PDF
    Characterizing genetic influences on DNA methylation (DNAm) provides an opportunity to understand mechanisms underpinning gene regulation and disease. In the present study, we describe results of DNAm quantitative trait locus (mQTL) analyses on 32,851 participants, identifying genetic variants associated with DNAm at 420,509 DNAm sites in blood. We present a database of >270,000 independent mQTLs, of which 8.5% comprise long-range (trans) associations. Identified mQTL associations explain 15–17% of the additive genetic variance of DNAm. We show that the genetic architecture of DNAm levels is highly polygenic. Using shared genetic control between distal DNAm sites, we constructed networks, identifying 405 discrete genomic communities enriched for genomic annotations and complex traits. Shared genetic variants are associated with both DNAm levels and complex diseases, but only in a minority of cases do these associations reflect causal relationships from DNAm to trait or vice versa, indicating a more complex genotype–phenotype map than previously anticipated

    FMR1 Genotype with Autoimmunity-Associated Polycystic Ovary-Like Phenotype and Decreased Pregnancy Chance

    Get PDF
    The FMR1 gene partially appears to control ovarian reserve, with a specific ovarian sub-genotype statistically associated with a polycystic ovary (PCO)- like phenotype. Some forms of PCO have been associated with autoimmunity. We, therefore, investigated in multiple regression analyses associations of ovary-specific FMR1 genotypes with autoimmunity and pregnancy chances (with in vitro fertilization, IVF) in 339 consecutive infertile women (455 IVF cycles), 75 with PCO-like phenotype, adjusted for age, race/ethnicity, medication dosage and number of oocytes retrieved. Patients included 183 (54.0%) with normal (norm) and 156 (46%) with heterozygous (het) FMR1 genotypes; 133 (39.2%) demonstrated laboratory evidence of autoimmunity: 51.1% of het-norm/low, 38.3% of norm and 24.2% het-norm/high genotype and sub-genotypes demonstrated autoimmunity (p = 0.003). Prevalence of autoimmunity increased further in PCO-like phenotype patients with het-norm/low genotype (83.3%), remained unchanged with norm (34.0%) and decreased in het-norm/high women (10.0%; P<0.0001). Pregnancy rates were significantly higher with norm (38.6%) than het-norm/low (22.2%, p = 0.001). FMR1 sub-genotype het-norm/low is strongly associated with autoimmunity and decreased pregnancy chances in IVF, reaffirming the importance of the distal long arm of the X chromosome (FMR1 maps at Xq27.3) for autoimmunity, ovarian function and, likely, pregnancy chance with IVF

    Shared activity patterns arising at genetic susceptibility loci reveal underlying genomic and cellular architecture of human disease

    Get PDF
    <div><p>Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns of transcriptional activity. Accordingly, shared transcriptional activity (coexpression) may help prioritise loci associated with a given trait, and help to identify underlying biological processes. Using cap analysis of gene expression (CAGE) profiles of promoter- and enhancer-derived RNAs across 1824 human samples, we have analysed coexpression of RNAs originating from trait-associated regulatory regions using a novel quantitative method (network density analysis; NDA). For most traits studied, phenotype-associated variants in regulatory regions were linked to tightly-coexpressed networks that are likely to share important functional characteristics. Coexpression provides a new signal, independent of phenotype association, to enable fine mapping of causative variants. The NDA coexpression approach identifies new genetic variants associated with specific traits, including an association between the regulation of the OCT1 cation transporter and genetic variants underlying circulating cholesterol levels. NDA strongly implicates particular cell types and tissues in disease pathogenesis. For example, distinct groupings of disease-associated regulatory regions implicate two distinct biological processes in the pathogenesis of ulcerative colitis; a further two separate processes are implicated in Crohn’s disease. Thus, our functional analysis of genetic predisposition to disease defines new distinct disease endotypes. We predict that patients with a preponderance of susceptibility variants in each group are likely to respond differently to pharmacological therapy. Together, these findings enable a deeper biological understanding of the causal basis of complex traits.</p></div
    corecore