32 research outputs found

    Indikatoren für die Vitalität von Lumbricus terrestris Populationen – Eine Anwendung von Partial Least Squares Pfadmodellen (PLS-PM) zur Analyse komplexer Zusammenhänge

    Get PDF
    Information on biodiversity and related population parameters are of key importance for assessing ecosystem services or impacts of management decisions in agriculture. However information on this parameters is often not directly measurable. Indicators are a convenient way to gain information on these variables. Here we present Partial Least Squares Path Modeling (PLS-PM) to develop and evaluate complex indicators for biodiversity and related parameters. As an example we use data on Lumbricus terrestris from 76 plots on Bavarian mixed farms to create complex indicators for population viability, management intensity and site potential and model their causal relations

    Betriebliche Bewirtschaftungsindikatoren für Biodiversität im Ökologischen Landbau und in extensiven Anbausystemen in Europa

    Get PDF
    Farming practices are the key to maintaining and restoring farmland biodiversity. Selected farm management indicators, regarded as scientifically sound, practicable and attractive to stakeholders, were tested against species indicators in various farm types in 12 case studies across Europe. A set of eight farm management indicators is recommended, reflecting the pressure on biodiversity by farm management via energy and nutrient input, mechanical operations, pesticide use and livestock

    Comparative Study of the Sensitivity of Different Diagnostic Methods for the Laboratory Diagnosis of Buruli Ulcer Disease

    Get PDF
    Background. Several diagnostic laboratory methods are available for case confirmation of Buruli ulcer disease. This study assessed the sensitivity of various diagnostic tests in relation to clinical presentation of the disease, type of diagnostic specimen, and treatment history. Methods. Swab samples, 3-mm punch biopsy tissue specimens, and surgically excised tissue specimens from 384 individuals with suspected Buruli ulcer disease were obtained at 9 different study sites in Ghana and were evaluated with dry reagent-based polymerase chain reaction (PCR), microscopic examination, culture, and histopathological analysis. The study subjects presented with nonulcerative and ulcerative lesions and were divided into 3 treatment groups: (1) previously untreated patients scheduled for antimycobacterial treatment, (2) patients treated with surgery alone, and (3) patients treated with surgery in combination with previous antimycobacterial treatment. Results. Of 384 suspected cases of Buruli ulcer disease, 268 were confirmed by at least 1 positive test result. The overall sensitivity of PCR (85%) was significantly higher than that of microscopic examination (57%) and culture (51%). After data were stratified by treatment group, type of lesion, and diagnostic specimen type, analysis revealed that PCR of 3-mm punch biopsy tissue specimens (obtained from previously untreated nonulcerative lesions) and of swab samples (obtained from previously untreated ulcers) had the highest diagnostic sensitivity (94% and 90%, respectively). Although duration of the disease did not significantly influence the sensitivity of any test, previous antimycobacterial treatment was significantly associated with decreased sensitivity of PCR and culture. Conclusions. Across all subgroups, PCR had the highest sensitivity. PCR assessment of 3-mm punch biopsy tissue specimens proved to be the best diagnostic tool for nonulcerative lesions, and PCR assessment of swab samples was the best diagnostic tool for ulcerative lesions. For monitoring of antimycobacterial treatment success within controlled trials, however, only culture is appropriat

    Indikatoren zur Erfassung genetischer Vielfalt in biologischen und nicht-biologischen Landwirtschaftssystemen

    Get PDF
    Genetic variability is the fundament of life. Large genetic variability within species is the basis for adaptation to changing environmental conditions. Farmers and breeders have developed a multitude of crop cultivars and animal breeds to stabilize and increase quality and productivity. This study evaluated genetic diversity within different organic and non-organic farming systems using crop-cultivar and livestock-breed information as simple indicators. Data was collected using on-farm surveys in 15 case study regions in Europe and beyond. Selected indicators revealed strong differences of cultivar diversity between different countries and farming systems across Europe. No or only small differences were detectable between organic and non-organic farming systems. Landraces, as on-farm genetic resources, were under-represented in European case study regions

    BIOBIO – Indikatoren für Biodiversität in ökologischen und ex-tensiven Anbausystemen

    Get PDF
    Organic and low-input farming systems provide habitats for wildlife on farmland. The EU FP7 project BIOBIO has identified a core set of 23 indicators relating to the diversity of habitats, of species, of crops and of livestock. Management indicators capturing the pressure on biodiversity are also proposed. The indicators were identified in an iterative process between scientists and stake-holders to make sure that they are not only scientifically sound but also practicable and attractive. They were tested in 12 case study regions on four major farm types. Allocating 0.25 % of the CAP budget to a farm scale biodiversity monitoring would allow to measure and analyse the indicators on 50,000 farms across Europe

    Strikingly high effects of geographic location on fauna and flora of European agricultural grasslands

    Get PDF
    International audienceWild bees, spiders, earthworms and plants contribute considerably to biodiversity in grasslands and fulfil vital ecological functions. They also provide valuable services to agriculture, such as pollination, pest control and maintenance of soil quality. We investigated the responses of wild bees, spiders, earthworms and plants to geographic location, agricultural management and surrounding landscape variables using a dataset of grassland fields within 88 farms in six European regions. Regions and taxonomic groups were selected to have contrasting properties, in order to capture the multiple facets of European grasslands. Geographic location alone had a dominant effect on the fauna and flora communities. Depending on the taxonomic group, various agricultural management and surrounding landscape variables alone had an additional significant effect on observed species richness, rarefied species richness and/or abundance, but it was always small. Bee species richness and abundance decreased with increasing number of mechanical operations (e.g. cutting). Observed spider species richness and abundance were unrelated to measured aspects of agricultural management or to surrounding landscape variables, whereas rarefied species richness showed significant relations to nitrogen input, habitat diversity and amount of grassland habitats in the surroundings. Earthworm abundance increased with increasing nitrogen input but earthworm species richness did not. Observed plant species richness decreased with increasing nitrogen input and increased when there were woody habitats in the surroundings. Rarefied plant species richness decreased with mechanical operations. Investigating multiple regions, taxonomic groups and aspects of fauna and flora communities allowed identifying the main factors structuring communities, which is necessary for designing appropriate conservation measures and ensuring continued supply of services

    Artenvielfalt auf biologischen und nicht-biologischen Landwirtschaftsbetrieben in zehn europäischen Regionen

    Get PDF
    One of the aims of organic farming is the protection of biodiversity. In the EU FP7 project BioBio, we studied the effect of organic farming on species numbers at farm level on 169 randomly selected organic and non-organic farms with mostly low to medium intensity in ten European regions. Using a preferential sampling scheme based on habitat mapping, numbers of plants, earthworms, spiders and bees were assessed at farm level. A global analysis across the ten regions shows that organic farms have significantly higher numbers of plant and bee species than non-organic farms. The effect of organic farming on earthworm and spider species numbers are also positive but insignificant. The effects in absolute terms are small and much smaller than the variation between individual farms. Currently ongoing analyses aim at identifying the important driving factors for farmland biodiversity

    How much would it cost to monitor farmland biodiversity in Europe?

    Get PDF
    International audienceTo evaluate progress on political biodiversity objectives, biodiversity monitoring provides information on whether intended results are being achieved. Despite scientific proof that monitoring and evaluation increase the (cost) efficiency of policy measures, cost estimates for monitoring schemes are seldom available, hampering their inclusion in policy programme budgets. Empirical data collected from 12 case studies across Europe were used in a power analysis to estimate the number of farms that would need to be sampled per major farm type to detect changes in species richness over time for four taxa (vascular plants, earthworms, spiders and bees). A sampling design was developed to allocate spatially, across Europe, the farms that should be sampled. Cost estimates are provided for nine monitoring scenarios with differing robustness for detecting temporal changes in species numbers. These cost estimates are compared with the Common Agricultural Policy (CAP) budget (2014-2020) to determine the budgetallocation required for the proposed farmland biodiversity monitoring. Results show that the bee indicator requires the highest number of farms to be sampled and the vascular plant indicator the lowest. The costs for the nine farmland biodiversity monitoring scenarios corresponded to 001%-074% of the total CAP budget and to 004%-248% of the CAP budget specifically allocated to environmental targets.Synthesis and applications. The results of the cost scenarios demonstrate that, based on the taxa and methods used in this study, a Europe-wide farmland biodiversity monitoring scheme would require a modest share of the Common Agricultural Policy budget. The monitoring scenarios are flexible and can be adapted or complemented with alternate data collection options (e.g. at national scale or voluntary efforts), data mobilization, data integration or modelling efforts. Editor's Choic
    corecore