
Aberystwyth University

Biodiversity assessment in LCA: a validation at field and farm scale in eight
European regions
Lüscher, Gisela; Nemecek, Thomas; Arndorfer, M.; Balázs, Katalin; Dennis, Peter; Fjellstad, Wendy; Friedel, J.
K.; Gaillard, Gerard; Herzog, Felix; Sarthou, Jean-Pierre; Stoyanova, Siyka; Wolfrum, Sebastian; Jeanneret,
Philippe

Published in:
International Journal of Life Cycle Assessment

DOI:
10.1007/s11367-017-1278-y

Publication date:
2017

Citation for published version (APA):
Lüscher, G., Nemecek, T., Arndorfer, M., Balázs, K., Dennis, P., Fjellstad, W., Friedel, J. K., Gaillard, G.,
Herzog, F., Sarthou, J-P., Stoyanova, S., Wolfrum, S., & Jeanneret, P. (2017). Biodiversity assessment in LCA:
a validation at field and farm scale in eight European regions. International Journal of Life Cycle Assessment,
22(10), 1483-1492. https://doi.org/10.1007/s11367-017-1278-y

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 09. Jul. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberystwyth Research Portal

https://core.ac.uk/display/326672182?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/s11367-017-1278-y
https://pure.aber.ac.uk/portal/en/persons/peter-dennis(ce803d6f-6dd2-4a37-96cd-f63059ede0b4).html
https://pure.aber.ac.uk/portal/en/publications/biodiversity-assessment-in-lca-a-validation-at-field-and-farm-scale-in-eight-european-regions(36f34651-d1c1-45fe-97d1-3d533eb42f98).html
https://pure.aber.ac.uk/portal/en/publications/biodiversity-assessment-in-lca-a-validation-at-field-and-farm-scale-in-eight-european-regions(36f34651-d1c1-45fe-97d1-3d533eb42f98).html
https://doi.org/10.1007/s11367-017-1278-y


1 

 

Biodiversity assessment in LCA: a validation at field and farm scale in 

eight European regions 

 

Gisela Lüscher, Thomas Nemecek, Michaela Arndorfer, Katalin Balázs, Peter Dennis, Wendy Fjellstad, Jürgen K. 

Friedel, Gérard Gaillard, Felix Herzog, Jean-Pierre Sarthou, Siyka Stoyanova, Sebastian Wolfrum, Philippe 

Jeanneret* 

 

 

 

Gisela Lüscher 

* Philippe Jeanneret (corresponding author) 

Thomas Nemecek 

Gérard Gaillard 

Felix Herzog 

Agroscope 

Reckenholzstrasse 191 

Zurich 8046 

Switzerland 

* e-mail: philippe.jeanneret@agroscope.admin.ch, telephone: +41 58 46 87228, fax: +41 58 46 87201 

 

Michaela Arndorfer 

ARCHE NOAH 

Obere Strasse 40 

Schiltern 3553 

Austria 

 

Katalin Balász 

Institute of Nature Conservation & Landscape Management 

Faculty of Agricultural and Environmental Sciences 

Szent István University 

Páter Károly u. 1 

Gödöllö 2100 

Hungary 

 

Manuscript Click here to download Manuscript Manuscript.docx 

Click here to view linked References

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.editorialmanager.com/jlca/viewRCResults.aspx?pdf=1&docID=2994&rev=1&fileID=81388&msid={58D9BDFD-B78E-4CD0-A2B0-602D806A4E5C}
http://www.editorialmanager.com/jlca/download.aspx?id=81388&guid=4aca6fb1-bbcc-41f2-adf8-6786e9c6804d&scheme=1
http://www.editorialmanager.com/jlca/download.aspx?id=81388&guid=4aca6fb1-bbcc-41f2-adf8-6786e9c6804d&scheme=1


2 

 

Peter Dennis 

Institute of Biological, Environmental and Rural Sciences 

Cledwyn Building, Penglais Campus 

Aberystwyth University 

SY23 3DD 

United Kingdom 

 

Wendy Fjellstad 

Norwegian Institute of Bioeconomy Research 

PO Box 115 

1431 Ås 

Norway 

 

Jürgen K. Friedel 

University of Natural Resources & Life Sciences, Vienna 

Gregor Mendel Strasse 33 

1180 Vienna 

Austria 

 

Jean-Pierre Sarthou 

INRA, UMR 1248 Agir 

Chemin de Borde-Rouge 

Castanet-Tolosan 31326 

France 

 

Siyka Stoyanova 

Institute of Plant Genetic Resources “K.Malkov” 

Druzhba str. 2 

4122 Sadovo 

Bulgaria 

 

Sebastian Wolfrum 

Chair of Organic Agriculture and Agronomy, Technical University of Munich 

Liesel-Beckmann-Strasse 2 

Freising 85354 

Germany

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



3 

 

Abstract 1 

Purpose: Inclusion of biodiversity as an indicator in the land use impact pathway of Life Cycle Assessment (LCA) 2 

is essential to assess the effects of human activities on the environment. Numerous models have been applied, but 3 

validations that use actual data, collected in the field, are scarce. 4 

Methods: The expert system SALCA-BD (Swiss Agricultural LCA – Biodiversity), assigns coefficients for land 5 

use class suitability and impact of agricultural practices on species diversity at field and farm scale. We used data 6 

on land use classes and agricultural practices from 132 farms located in eight European regions to complete the 7 

life cycle inventory. SALCA-BD species diversity scores were calculated for individual fields, aggregated to the 8 

farm scale and compared to field records of arable crop flora, grassland flora, spiders and wild bees. 9 

Results: Overall, species diversity scores from SALCA-BD were positively related to the observed species richness 10 

from field survey data. The extent of the relationship diminished from arable crop flora and grassland flora to 11 

spiders and to wild bees, and from field to farm scale. 12 

Conclusions: Validation of a LCA biodiversity assessment tool with data from field surveys revealed the benefit 13 

of considering multiple aspects of biodiversity. The appropriate scale for species diversity assessment (as a proxy 14 

for biodiversity) is the respective species habitat. Extension of scale increases uncertainty, which should be 15 

addressed by developing characterization factors for as detailed a land use classification as possible. 16 

Keywords 17 

Agriculture; Biodiversity indicators; Farmland biodiversity; Life Cycle Assessment; SALCA; Species diversity 18 

1 Introduction 19 

Terrestrial biodiversity has been affected by agricultural land use, and its decline in recent decades leaves no doubt 20 

as to the urgent need for reliable information on its state and changes, not least because human well-being is closely 21 

linked to biodiversity and to the goods and services that ecosystems provide (Robinson and Sutherland 2002; MEA 22 

2005; Perrings 2014; UN 2012). Besides its intrinsic value, biodiversity is part of the essential natural resources 23 

to agricultural production (Balvanera et al. 2006). The necessity of incorporating impacts on biodiversity in LCA 24 

methodologies has long been recognized (UNEP/SETAC Life Cycle Initiative; Jolliet et al. 2004; Milà i Canals et 25 

al. 2007), and the state of the art has been summarized in reviews (Curran et al. 2011; Koellner and Geyer 2013; 26 
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Lenzen et al. 2007). However, biodiversity assessment is a crucial issue but hardly tangible due to its complexity 27 

(Souza et al. 2015). 28 

Dating back to the 1990s, several efforts have been made to include biodiversity in LCA of land use impacts, 29 

including attempts to quantify how uncertainties in the relationship between species and area may influence LCA 30 

outcomes (Lindeijer 2000; De Schryver et al. 2010). Nevertheless, there is no agreement yet on one generally 31 

successful concept that can include the multiple aspects of biodiversity, although substantial progress has been 32 

made and was recently published in the framework of the UNEP/SETAC Life Cycle Initiative (Curran et al. 2016), 33 

and recommendations were released such as the necessity of validating LCA outcomes with data from field survey 34 

(Teixeira et al. 2016). 35 

Most LCA approaches distinguish between the impacts of land transformation and those of land occupation. The 36 

concept is based on the assumption that land use can be described by a number of discrete land use classes. Land 37 

transformation involves changing the land cover of a certain area from one land use class to another in a permanent 38 

way, such as conversion of native forest to arable land, transforming grassland to arable land, or replacing 39 

agriculture with urban land use. Land occupation impacts are the effects on land quality of ongoing activities in 40 

an area belonging to a specific land use class (Milà i Canals et al. 2007; Schmidt 2008; Souza et al. 2015). Koellner 41 

et al. (2013) have suggested a globally applicable classification of distinct land types, specifically for the purposes 42 

of LCA. This allows the assessment of land transformation and occupation effects at a coarse scale and covering 43 

all areas (De Baan et al. 2013). Due to underlying simplifications, however, this system may be unable to capture 44 

specific determinants of biodiversity in specific regional circumstances. Not surprisingly, modelling state and 45 

changes of real biodiversity remains challenging because of the complexity and dynamics of biodiversity in itself, 46 

as well as data limitations and conceptual issues (Curran et al. 2011). In this context, the following two aspects 47 

need particular attention (Chaudhary et al 2015; De Baan et al 2015; Koellner et al. 2013; Souza et al 2015):  48 

 The need to clearly specify which aspect of biodiversity is under study, e.g. nature conservation or 49 

functional issues; diversity of genes, species or ecosystems; and, in the case of using surrogates, how 50 

representative these are for the aspect in focus. As biodiversity includes the entire variability among living 51 

organisms and ecological complexes, it encompasses so many facets, aspects and dimensions that it 52 

cannot be measured as a whole. Therefore, indicators are used to assess the state of and changes in 53 

biodiversity. Single indicators can provide insight only into certain aspects of biodiversity. A more 54 

comprehensive assessment is achieved by using a set of complementary indicators that represent e.g. 55 
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different ecological niches, trophic interactions, mobility, responses to agricultural practices and/or 56 

ecosystem services (Büchs 2003; Duelli and Obrist 2003). 57 

 The spatial scale, the classification of land cover and land use and the up-scaling from local to global 58 

scales or vice versa, which has considerable limits because regional peculiarities and landscape 59 

composition are crucial factors. The field scale is the most detailed approach, since it represents a 60 

management unit in agriculture. It allows for the evaluation of direct relations between species diversity 61 

and human activities for individual land use classes. By accounting for the proportional area of the 62 

different land use classes, results can then be up-scaled to the farm scale or larger areas. In the case of 63 

agricultural landscapes, the individual farms are of crucial importance because major decisions for 64 

biodiversity are taken at this scale. 65 

A critical step in the development of models of the effects of land use on biodiversity is to validate the models 66 

using empirical data (Ciroth and Becker 2006). Our objective here is to validate an expert system (SALCA-BD 67 

for Swiss Agricultural LCA – Biodiversity; Jeanneret et al. 2014), which has been applied in several agricultural 68 

case studies (Nemecek et al. 2008, 2011a, 2011b, 2015). The expert system SALCA-BD assesses the habitat 69 

suitability and beneficial or detrimental effects of agricultural practices (land occupation impacts) from land use 70 

and management information at the finest scale, i.e. the field, on terrestrial species diversity represented by a set 71 

of indicator species groups (ISGs). To validate SALCA-BD for four of its ISGs, namely arable crop flora, grassland 72 

flora, spiders and wild bees, we used species data of ground surveys of a range of contrasting farming conditions 73 

across Europe from a European research project on biodiversity indicators in farmland (Herzog et al 2012). 74 

2 Methods 75 

2.1 The expert system 76 

SALCA-BD was developed to assess land occupation and land management impacts on biodiversity at the 77 

midpoint level of the impact pathway. It relies on published experimental and observational data as well as expert 78 

knowledge. The method is explained in detail in Jeanneret et al. (2014) and is validated here with species data of 79 

ground surveys. 80 

The SALCA-BD expert system is embedded in the SALCA method, i.e. the Swiss Agricultural LCA, which 81 

performs a comprehensive assessment for a large variety of agricultural systems (Gaillard and Nemecek 2009). 82 

Life cycle impact assessment within the SALCA framework is performed for a comprehensive set of impact 83 
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categories at midpoint level that are relevant for agricultural systems. No damage modelling to the endpoints is 84 

carried out. Biodiversity is therefore analyzed as a midpoint category, in contrast to some other impact modelling 85 

frameworks (e.g. Souza et al. 2015; Curran et al. 2016), where biodiversity impacts are modelled to their endpoint. 86 

Land area is the functional unit of SALCA-BD. Using a bottom-up approach, the expert system relies on 87 

information about land use class and agricultural practices at the field scale. Further, impacts across multiple fields 88 

of different classes are aggregated to impacts at the farm and regional scale. In SALCA-BD, eleven indicator 89 

species groups (ISGs) were selected with criteria taking into account the relationship to the agricultural activity as 90 

well as general criteria such as ISG distribution, habitats, and level in the food chain. Below ground biodiversity 91 

is not considered in the expert system. SALCA-BD provides dimensionless biodiversity scores based on a life 92 

cycle inventory and considers, first, the suitability of land use classes such as arable crops, grasslands and semi-93 

natural habitats for the ISGs. A specific suitability coefficient is assigned to each land use class per ISG ranging 94 

from 0 to 10 (see a list of land use classes in Appendix A, Table S1 in ESM, Electronic supplementary material). 95 

For example, a coefficient of 0 is assigned to the land use class “wheat field” for the ISG “grassland flora” because 96 

wheat is no habitat for the grassland flora. Second, agricultural practices in the respective land use class are listed 97 

in the life cycle inventory, e.g. soil cultivation, sowing and planting, fertilization, crop protection, cutting/grazing 98 

and harvesting. Again, coefficients from 0 to 10 are assigned that reflect the sensitivity of the ISGs to the various 99 

agricultural practices. For instance, butterflies are extremely sensitive to the cutting regime in meadows and got 100 

therefore a coefficient of 10 for this practice. Furthermore, each detailed option of each agricultural practice such 101 

as the date of e.g. cutting, the quantity of e.g. fertilizer, the type of e.g. crop protection, and the technology of e.g. 102 

soil preparation is assessed regarding its relative impact on the ISGs on a scale from 1 to 5 (impact rating). The 103 

assessment procedure results finally in an overall species diversity score (OSD score) for each ISG per land use 104 

class and practice, which range then from 0 to 50 (mean land use class and practice coefficient times impact rating). 105 

An OSD score of 0 means that the land use class is no habitat for the considered ISG. An OSD score of 50 means 106 

that the land use class and the practice is of primary importance for the considered ISG, and that the impact of the 107 

practice is positive (rating is 5). For instance, ruderal semi-natural habitats are particularly favorable for wild bees 108 

and get an OSD score of 50. Additionally, the OSD scores of the individual ISGs are weighted according to the 109 

total species richness of the ISG and its position in the food web to result in a combined score for aggregated 110 

biodiversity per land use class. All individual ISG scores as well as the aggregated biodiversity score per land use 111 

class can be aggregated further to larger spatial scales such as farm or region. 112 
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2.2 Data sources 113 

Species and land use data of eight European regions were collected in 2010 in the EU-FP7 project BioBio, which 114 

developed biodiversity indicators for farmland monitoring (Table 1; Herzog et al. 2012). The data comprise 115 

detailed maps of 132 farms with all fields, i.e. arable crops and grasslands and semi-natural habitats such as 116 

hedgerows, groves or wildflower strips (Dennis et al. 2012). The land use classes of the BioBio project were 117 

translated to the land use classes of the life cycle inventory of SALCA-BD. Information about agricultural practices 118 

per field were collected through interviews with the farmers, following a standardized questionnaire, and 119 

transferred to the life cycle inventory. 120 

Species data were collected following a stratified sampling design aiming at comprehensive species lists at farm 121 

scale (for each land use class per farm, one field was randomly selected). In each selected field, vascular plants 122 

(arable crop flora and grassland flora), spiders and wild bees were sampled according to standardized protocols 123 

(Dennis et al. 2012). During the BioBio project process, the four species groups were selected following a scientific 124 

knowledge assessment, survey practicability in a range of farming systems, and stakeholder consultation. They 125 

represent contrasting resource requirements, trophic levels and mobility (Jeanneret et al. 2012a). We used the 126 

observed species richness (i.e. number of species) as a proxy for biodiversity, as species richness was generally 127 

correlated with other species diversity measures (Jeanneret et al. 2012b). The observed number of species was 128 

recorded for all four ISGs in each selected field (see Table S1 in ESM for the average number of species per ISG, 129 

land use class and region). At the farm scale, the observed total number of species per ISG that was found across 130 

the land use classes of the farm was recorded. In the ecological context, this represents the observed gamma 131 

diversity. Gamma diversity combines the average diversity within the community of a land use class (alpha 132 

diversity) and the diversity among the communities (beta diversity; Veech et al. 2002). We deem gamma diversity 133 

to be of particular interest for stakeholders as an easily understood indicator. 134 

2.3 Data analysis 135 

2.3.1 Grouping of data 136 

Whilst management information was complete for agricultural fields, it had not been recorded for semi-natural 137 

land use classes (mostly linear land use classes such as hedgerows, grassy strips, etc. without production purpose). 138 

For semi-natural land use classes, therefore, OSD scores are solely based on the suitability coefficient of the 139 

respective land use class. Hence, two data sets were analysed separately: 140 
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 Reduced data set (667 fields in 131 farms): exclusively fields with available information about 141 

agricultural practices, analyses at field scale and at farm scale (farm scale A). 142 

 Full data set (1263 fields in 132 farms): all fields with and without available information about 143 

agricultural practices, including semi-natural land use classes; analyses at farm scale only (farm scale B). 144 

The reduced data set allowed investigations at the highest level of detail possible at field scale and the validation 145 

of the aggregation procedure at farm scale A. The full data set provided insight in the effects of semi-natural land 146 

use classes at farm scale. 147 

2.3.2 Statistics 148 

The four ISGs, arable crop flora, grassland flora, spiders and wild bees, were analysed individually. To investigate 149 

whether the observed species richness of each ISG was related to the OSD scores calculated by SALCA-BD, we 150 

used generalized linear mixed-effects models (see Appendix B in ESM for the formulas, Zuur et al. 2013). First, 151 

we assumed a Poisson distribution for our response variable, i.e. the observed species richness, which consists of 152 

count data. When the modelling results indicated that the variance was larger than the mean (overdispersion), we 153 

applied the more appropriate negative binomial distribution. Land use class and region were included as two 154 

categorical variables in the random part of the model. All possible combinations of varying intercepts and slopes 155 

for the random effects were calculated. For each ISG the best model was selected based on the Akaike information 156 

criterion (AIC) that is a combination of model fit as measured by the log-likelihood value, and model complexity 157 

as measured by the number of parameters (Akaike 1973). From the corresponding best models, we evaluated how 158 

well species richness was represented by the OSD scores (fixed effects) based on the direction and significance of 159 

the estimated coefficients (slope) and the meaning of including or excluding random effects. In a second analysis, 160 

we performed generalized linear models with negative binomial distribution for each ISG per region separately 161 

(see Appendix B in ESM for the formulas). 162 

3 Results 163 

Overall, we found positive relations between observed species richness and calculated overall species diversity 164 

scores (OSD scores) for the four indicator species groups (ISGs) (Table 2, Fig. 1). The relations were stronger for 165 

arable crop flora and grassland flora than for spiders and wild bees, and they decreased in strength from field scale 166 

to farm scale A and then to farm scale B. For each region, considered separately (Table 3), significant positive 167 

relations were found for arable crop flora and grassland flora in the majority of the regions, whereas this was the 168 
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case in half of them for spiders and in one quarter for bees. All significant relationships were positive except the 169 

observed species richness of wild bees and the overall species diversity scores in the Bulgarian (BG) region. 170 

3.1 Arable crop flora 171 

Observed species richness and OSD scores of arable crop flora were low in maize fields but high in cereal fields 172 

(Fig. 1). At field scale, this was reflected by the inclusion of varying intercepts for land use classes in the best 173 

model (Tab. 2). In addition, this model allowed varying slopes but not varying intercepts for region, which 174 

indicates a stronger or weaker increase in the observed species richness with higher OSD scores depending on the 175 

region but similar levels in observed species richness across regions. At farm scale A, the positive relation relied 176 

mainly on the farms in the German (DE) region, where a broad variety of cropland land use classes occurred (Fig. 177 

1 and Table 3). Varying slopes for regions were included in the best model. At farm scale B, semi-natural land use 178 

classes added considerable numbers of species to the total farm species richness observed. OSD scores hardly 179 

increased, however, because such land use classes normally cover only small areas. Total farm species richness 180 

was high in the French (FR) region compared to the other regions. One farm from the French region that 181 

strengthened the positive result, was a farm in which the only land use class containing arable crop flora was the 182 

semi-natural land use class ‘wild flower strip’. The best model included varying intercepts for regions. 183 

3.2 Grassland flora 184 

For grassland flora, observed species richness and OSD scores were clearly higher in permanent grassland 185 

(meadows, pastures and forest pastures) than in leys (Fig. 1). Therefore, at field scale, varying intercepts for land 186 

use classes were included in the best model (Tab. 2). In addition, the best model let the intercepts and slopes for 187 

regions vary. We found distinct positive relationships in regions where both leys and permanent grasslands existed 188 

(the German (DE), French (FR) and the Hungarian (HU) region), or where the majority of permanent grasslands 189 

were managed as meadows, i.e. exclusively cut or cut and grazed (the Swiss (CH) and the Norwegian (NO) region, 190 

Tables 3 and S2 in ESM). No distinct relationships could be detected in regions where leys were the only land use 191 

class for grassland flora (the Austrian (AU) region) or where the majority of permanent grasslands were managed 192 

as pastures, i.e. exclusively grazed (the Bulgarian (BG) and the Welsh (GB) region). At farm scale A, the variability 193 

between regions was expressed in varying intercepts for regions (Fig. 1). At farm scale B, the positive relation 194 

between total farm species richness and OSD scores was not significant. 195 
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3.3 Spiders 196 

Observed spider species richness was significantly but weakly positively related to OSD scores at field scale (Fig. 197 

1, Tab. 2). The best model included varying intercepts for land use classes and regions, taking into account lower 198 

species richness in cropland than in grassland and differences between regions. No varying slopes were included 199 

in the best model. At farm scale A, the overall positive relationship was not significant. In the Austrian (AT), 200 

German (DE), French (FR) and Hungarian (HR) region, spider species richness clearly increased with higher OSD 201 

scores, whereas there was no distinct pattern in grassland dominated regions (Fig. 1 and Table 3). In the French 202 

(FR) region, total farm species richness was much higher than would be expected from the calculated OSD scores. 203 

The average observed number of spider species increased by around twenty species at farm scale B, revealing the 204 

importance of including semi-natural land use classes but the relationship with OSD scores was not significant. 205 

3.4 Wild bees 206 

OSD scores for bee species richness at field scale formed two groups (Fig. 1). The lower group included arable 207 

land use classes. The higher group included grassland land use classes. Observed bee species richness followed 208 

this trend (Tab. 2). The strongest positive relation was found in the French (FR) region (Table 3). Overall, in many 209 

fields only few or even no bee species were observed. The best model included varying intercepts for land use 210 

classes and varying intercepts and slopes for regions, the same as the best model for grassland flora. At farm scales 211 

A and B, bee species richness was not significantly related to OSD scores across regions but trends were positive 212 

in cropland regions while there were no relationships, or in one case a negative, in grassland-dominated regions 213 

(Fig. 1). 214 

4 Discussion 215 

Our study detected a significant positive relationship between the biodiversity indicator, i.e. overall species 216 

diversity scores (OSD scores) calculated with the SALCA-BD expert system and empirical data of species richness 217 

for each tested indicator species group (ISG) at field scale. Since large field surveys of biodiversity or even the 218 

mapping of land use classes from remote sensing are expensive activities, modelling approaches such as the 219 

SALCA-BD expert system provide an undoubted advantage. Land use impact assessments on biodiversity are 220 

useful for e.g. comparing impacts at various scales (field, farm, region) or elaborating measures that benefit 221 

biodiversity. 222 
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Beyond the data used in this study, SALCA-BD computes scores for eleven ISGs that are combined in one 223 

biodiversity score taking into account the total species richness of the individual ISGs and their position in the 224 

food web. The question arises then whether all ISGs are indispensable to model impacts of agricultural activities 225 

on biodiversity. The results of the validation study confirm that multiple ISGs are necessary to encompass as much 226 

as possible of biodiversity, as we found distinct patterns of relationship between the expert system scores and the 227 

measured species richness for arable crop flora, grassland flora, spiders, and wild bees, depending on the scale. 228 

While all were positive and significant at field scale, relationships were no more significant for mobile groups, 229 

namely spiders and bees at farm scale. This suggests that mobile ISGs do likely react to typical beyond field 230 

parameters the expert system does not take into account such as e.g. edge effects, spatial arrangement, connectivity, 231 

or fragmentation which effects have been demonstrated in several studies (e.g. Clough et al 2005; Fahrig et al 232 

2011; Gaujour et al 2012; Kremen et al 2007). Generally speaking, transfer of findings from one biodiversity 233 

indicator to another is often hazardous given that no single indicator can be derived that surrogates for all other 234 

organisms in terms of its reaction to farming operations as emphasized in previous studies (Büchs 2003; Lund and 235 

Rahbek 2002; Lüscher et al 2014; Lüscher et al 2015). In their evaluation of the completeness of scope and high 236 

biodiversity representation, Curran et al. (2016) evaluated the SALCA-BD expert system as the second best 237 

approach of 20 biodiversity indicator models in LCA frameworks. 238 

Our validation process was directed at the core of the SALCA-BD expert system, i.e. the suitability of land use 239 

classes as habitats and the effects of agricultural practices on species richness. Results reflected the main issues of 240 

this approach. For example, the stronger positive relationships between OSD scores and species richness of arable 241 

crop flora and grassland flora than of spiders and bees could be related to the fact that land use class demarcation 242 

generally relied on vegetation characteristics. The inclusion of the land use class as varying intercept in all best 243 

models at field scale indicated the importance of an appropriate land use classification. For the aggregation from 244 

field scale to farm scale, the SALCA-BD expert system combined scores of each land use class based on the 245 

relative proportion of the land use class area to the total farm area. In this way, scores of small land use classes, 246 

i.e. most semi-natural land use classes, contribute little to the scores at farm scale. However, these land use classes 247 

often contribute much to the total farm species richness. Further, in the aggregation algorithm, important 248 

parameters of spatial arrangement are not included as mentioned before. Consideration of the spatial configuration 249 

of the land use classes in the expert system would certainly improve score prediction by ground survey data, 250 

especially for mobile organisms as scores computed at field scale are aggregated at farm scale. This is particularly 251 

important because assessment at farm scale is relevant to compare different management strategies and to directly 252 
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address the farmers as important decision makers for the agricultural area. Incorporation of spatial characteristics 253 

into the SALCA-BD expert system for real farm assessments is promising but would require the extension of the 254 

life cycle inventory to include cartographic information. 255 

Limitations that can explain the large range of the species richness observed for a constant score obtained with the 256 

expert system are the wider landscape context and the temporal dynamic. For example, a decline in biodiversity at 257 

a landscape level beyond the expert system boundaries may contribute to the decline of the local – field or farm – 258 

biodiversity despite biodiversity friendly farming practices. Similarly, the expert system assumes an instantaneous 259 

response of species diversity to agricultural practices although farming effects may take years to fully impact as 260 

for instance low-input management. Here, in general, patterns confirmed that the direction, extent and combination 261 

of coefficients assigned to different agricultural practices were reflected in the data from field surveys.  262 

5 Conclusions 263 

An indicator of biodiversity grasps just a piece of the whole entity. So, validation of such an indicator needs 264 

appropriate data to clearly address the respective piece of biodiversity. Here, the availability of empirical species 265 

data allowed a validation of the SALCA-BD biodiversity indicator and revealed its strengths and potential for 266 

improvement. Although validation was restricted to four indicator species groups (ISG) of the eleven ISGs 267 

included in the SALCA-BD biodiversity indicator, differences among groups were pointed out and indicated their 268 

complementary value. The study highlighted that modelling species richness at smaller spatial scales was more 269 

successful than at larger scales. Detailed land use classes (e.g. types of cultivated arable crops or grassland under 270 

cutting vs. grazing management) were good predictors of the variability in observed species richness across the 271 

European study regions. However, there is still high potential for improvement, especially regarding semi-natural 272 

elements, which may be of marginal agricultural value but contribute considerably to species richness. 273 

In the framework of LCA, not only the regional but also the global scale is relevant. Regarding land use impact 274 

pathways, appropriate biodiversity indicators for various levels of land use classification from detailed to very 275 

general would be required. Considering species richness as a proxy for terrestrial biodiversity, our validation at a 276 

small spatial scale shows the huge amount of information required to predict species richness at small scale, i.e. 277 

areas from a few square meters up to a few square kilometers. Coarser land use classes (e.g. biomes) to expend at 278 

larger scales would cause a substantial loss of information and increased uncertainty in model results. Furthermore, 279 

due to the considerable variability among regions as demonstrated here, assigned coefficients in the model should 280 

be adapted to take into account different species pools and land use characteristics. Nevertheless, the validated 281 
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biodiversity indicator, i.e. the overall species diversity score (OSD) is dimensionless and can be used to express 282 

relative differences among studied entities. Extending the model framework to non-agricultural areas and activities 283 

such as forestry, mining, transport, processing, consumption and waste management would require a 284 

reconsideration and adaptation of the set of ISGs since the ISGs were selected specifically for agricultural areas. 285 

Furthermore, land transformation impacts would need to be included in the method. For the future, a 286 

comprehensive biodiversity assessment in LCA will remain a huge challenge. To take steps forward to this goal, 287 

our study revealed that a standardized and detailed land use classification, accompanied by detailed land 288 

management information, is a clear advantage. 289 
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Table 1 Overview of data included in analyses. Latitude and longitude are the coordinates of the centroid of all fields within a 

region. MAT is the mean annual temperature. Altitude is expressed in m asl, i.e. meters above sea level. Ecoregions according 

to Olson et al (2001). 

Region AT BG CH DE FR GB HU NO 

Geographic 

region 
Marchfeld 

Rhodope 

Mountains 
Obwalden 

Southern 

Bavaria 
Gascony Wales 

Homok-

hátság 
Hedmark 

Country Austria Bulgaria 
Switzer-

land 
Germany France 

United 

Kingdom 
Hungary Norway 

Latitude 48.278 41.687 46.885 48.416 43.351 52.474 46.824 62.394 

Longitude 16.724 24.569 8.197 11.345 0.792 -3.496 19.476 10.951 

Farm type 
Arable 

crops 
Grassland Grassland Mixed 

Arable 

crops 
Grassland Mixed Grassland 

Altitude [m asl] 140 - 180 900 - 1400 605 - 1133 350 - 500 197 - 373 450 - 1085 93 - 168 488 - 886 

Ecoregion 

Pannonian 

mixed 

forests 

Rodope 

montane 

mixed 

forests 

Alps 

conifer and 

mixed 

forests 

Western 

European 

broadleaf 

forests 

Western 

European 

broadleaf 

forests 

Celtic 

broadleaf 

forests 

Pannonian 

mixed 

forests 

Scandinavian 

Montane 

Birch forest 

and 

grasslands 

Rainfall [mm 

per year] 
560 900 1300 800 680 1500 550 470 

MAT [°C] 9.5 7.5 5.6 8.5 13 10 10.4 0.4 

No. of farms 16 16 19 16 16 19 18 12 

No. of fields 

(fields with 

information 

about 

occupation 

interventions) 

123 (52) 146 (84) 139 (63) 129 (85) 224 (131) 224 (88) 159 (100) 119 (64) 
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Table 2 Results of best-fit negative binomial generalized mixed effects models for four indicator species groups. Values are 

log-transformed (natural logarithm). The intercept indicates the general species richness of the indicator species group under 

study. The slope indicates the direction (positive or negative) of the relationship between species richness and overall species 

diversity scores and its strength. For the random part, X indicates that a random intercept or slope is included in the best model, 

- indicates exclusion. The negative binomial parameter informs about the variance of the model. Field scale and farm scale A 

include exclusively fields for which information about agricultural practices was available. Farm scale B includes all fields, i.e. 

arable crops, grasslands and semi-natural habitats. Abbreviations for the indicator species groups: Afl = Arable crop flora, Gfl 

= Grassland flora, Spi = Spiders, Wbe = Wild bees. P-values were calculated from likelihood-ratio tests and significances 

indicated as * =  p < 0.05, ** = p < 0.01 and *** = p ≤ 0.001. Random effect coefficients were given as standard deviation of 

the corresponding varying intercepts and slopes, respectively 

 

  Fixed part Random part  

  

Indicator 

species 

group 

(ISG) 

Intercept       

(Std. Error) 

Slope                   

(Std. Error) 

Land use 

class                

intercept 

Region 

intercept 

Region 

slope 

Neg. binomial para-

meter (Std. Error) 

Field 

scale 

Afl 0.375 (0.65) 0.131** (0.041) X - X 6.823 (1.355) 

Gfl 2.283 (0.214) 0.056** (0.017) X X X 11.113 (1.118) 

Spi 1.357 (0.238) 0.033* (0.015) X X - 6.548 (0.764) 

Wbe -0.088 (0.344) 0.046* (0.021) X X X 3.512 (0.53) 

Farm 

scale 

A 

Afl 2.156 (0.323) 0.052* (0.024)  - X 8.045 (2.244) 

Gfl 3.02 (0.283) 0.074*** (0.019)  X - 9.51 (1.538) 

Spi 2.445 (0.374) 0.049 (0.028)  X - 7.418 (1.282) 

Wbe 1.671 (0.452) 0.02 (0.026)  X - 3.725 (0.76) 

Farm 

scale 

B 

Afl 2.44 (0.292) 0.041*** (0.012)  X - 8.155 (2.122) 

Gfl 4.072 (0.129) 0.02 (0.013)  - X 12.636 (1.944) 

Spi 3.568 (0.215) 0.005 (0.013)  X - 12.409 (2.218) 

Wbe 2.435 (0.337) -0.003 (0.018)  X - 8.812 (2.063) 
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Table 3 Results of negative binomial generalized linear models for four indicator species groups in eight regions. Values are 

log-transformed (natural logarithm). The intercept indicates the general species richness of the indicator species group under 

study. The slope indicates the direction (positive or negative) of the relationship between species richness and overall species 

diversity scores and its strength. Theta is the parameter to assess the variance of the negative binomial generalized linear model. 

Data are analyzed at field scale and include exclusively fields for which information about agricultural practices was available. 

Abbreviations for the indicator species groups: Afl = Arable crop flora, Gfl = Grassland flora, Spi = Spiders, Wbe = Wild bees. 
a) = the iteration limit was reached for calculating theta. P-values were calculated from likelihood-ratio tests and significances 

indicated as * = p < 0.05, ** = p < 0.01 and *** = p ≤ 0.001 

Indicator 

species 

group (ISG) Region 

Intercept       

(Std. Error) 

Slope                   

(Std. Error) 

Theta           

(Std. Error) 

Afl 

AT 1.878 (0.465) -0.003 (0.029) 5.019 (2.095) 

BG NA NA NA 

CH NA NA NA 

DE 1.663 (0.292) 0.063*** (0.017) 5.217 (1.807) 

FR 1.35 (0.489) 0.078** (0.028) 6.671 (1.743) 

GB NA NA NA 

HU 3.083 (0.298) -0.035 (0.018) a) 

NO NA NA NA 

Gfl 

AT 2.898 (1.722) -0.14 (0.289) 4.924 (3.341) 

BG 3.983 (0.542) -0.063 (0.04) 4.675 (0.929) 

CH 2.555 (0.182) 0.084*** (0.014) 57.403 (25.821) 

DE 2.52 (0.134) 0.036** (0.012) 84.613 (93.729) 

FR 2.109 (0.252) 0.092*** (0.018) 9.041 (2.209) 

GB 3.334 (0.3) -0.026 (0.022) 9.456 (2.141) 

HU 2.565 (0.158) 0.028* (0.012) 12.306 (3.099) 

NO 2.313 (0.223) 0.072*** (0.015) 12.354 (3.232) 

Spi 

AT -0.645 (0.527) 0.226*** (0.059) 5.483 (2.827) 

BG 1.381 (0.364) 0.004 (0.025) 19.405 (16.474) 

CH 1.559 (0.319) 0.027 (0.023) a) 

DE 1.529 (0.178) 0.053*** (0.015) 18.966 (10.492) 

FR 1.338 (0.14) 0.073*** (0.011) 6.741 (1.586) 

GB 2.847 (0.265) -0.009 (0.018) 9.055 (2.681) 

HU 0.699 (0.484) 0.067* (0.034) 1.437 (0.288) 

NO 1.912 (0.296) 0.016 (0.019) 5.392 (1.622) 

Wbe 

AT -0.232 (1.441) -0.102 (0.268) 0.419 (0.236) 

BG 3.005 (0.899)  -0.109* (0.051) 20.034 (24.462) 

CH 0.865 (0.877) 0.033 (0.048) a) 

DE -0.953 (0.354) 0.057* (0.024) 0.979 (0.411) 

FR 0.534 (0.171) 0.089*** (0.012) 1.448 (0.29) 

GB 0.099 (0.845) 0.026 (0.046) 9.617 (11.306) 

HU 0.18 (0.367) 0.021 (0.021) 1.649 (0.509) 

NO 1.454 (0.991) -0.015 (0.054) 5.502 (2.958) 
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Figure caption 

Fig. 1 Relationships between overall species diversity scores and observed species richness for the four indicator species 

groups. X-axes show the calculated overall species diversity scores by SALCA-BD, y-axes show the number of observed 

species. Black lines indicate predicted values of best-fit negative binomial generalized mixed effects models over all regions 

(back-transformed). Dashed lines indicate the predicted values ± two standard errors (≈ 95% confidence interval). Fig. 1a (left 

column) shows the data at field scale. The colors indicate the eight land use classes, which are included in the reduced data set. 

Fig. 1b (middle column) shows the data of the reduced data set at farm scale, i.e., Farm scale A. The colors indicate the eight 

study regions. Fig. 1c (right column) shows all data at farm scale, i.e. Farm scale B. The colors indicate the eight study regions. 

FigureCaption
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