43 research outputs found

    Tetranuclear Zn/4f coordination clusters as highly efficient catalysts for Friedel-Crafts alkylation

    Get PDF
    A series of custom-designed, high yield, isoskeletal tetranuclear Zn/4f coordination clusters showing high efficiency as catalysts with low catalytic loadings in Friedel-Crafts alkylation are described for the first time. The possibility of altering the 4f centers in these catalysts without altering the core topology allows us to further confirm their stability via EPR and NMR, as well to gain insights into the plausible reaction mechanism, showcasing the usefulness of these bimetallic systems as catalysts

    The inverse-trans-influence in tetravalent lanthanide and actinide bis(carbene) complexes

    Get PDF
    Across the periodic table the trans-influence operates, whereby tightly bonded ligands selectively lengthen mutually trans metal–ligand bonds. Conversely, in high oxidation state actinide complexes the inverse-trans-influence operates, where normally cis strongly donating ligands instead reside trans and actually reinforce each other. However, because the inversetrans-influence is restricted to high-valent actinyls and a few uranium(V/VI) complexes, it has had limited scope in an area with few unifying rules. Here we report tetravalent cerium, uranium and thorium bis(carbene) complexes with trans C¼M¼C cores where experimental and theoretical data suggest the presence of an inverse-trans-influence. Studies of hypothetical praseodymium(IV) and terbium(IV) analogues suggest the inverse-trans-influence may extend to these ions but it also diminishes significantly as the 4f orbitals are populated. This work suggests that the inverse-trans-influence may occur beyond high oxidation state 5f metals and hence could encompass mid-range oxidation state actinides and lanthanides. Thus, the inverse-trans-influence might be a more general f-block principle

    Emergence of comparable covalency in isostructural cerium(IV)- and uranium(IV)-carbon multiple bonds

    Get PDF
    We report comparable levels of covalency in cerium- and uranium-carbon multiple bonds in the isostructural carbene complexes [M(BIPMTMS)(ODipp)2] [M = Ce (1), U (2), Th (3); BIPMTMS = C(PPh2NSiMe3)2; Dipp = C6H3-2,6-Pri2] whereas for M = Th the M=C bond interaction is much more ionic. On the basis of single crystal X-ray diffraction, NMR, IR, EPR, and XANES spectroscopies, and SQUID magnetometry complexes 1-3 are confirmed formally as bona fide metal(IV) complexes. In order to avoid the deficiencies of orbital-based theoretical analysis approaches we probed the bonding of 1-3 via analysis of RASSCF- and CASSCF-derived densities that explicitly treats the orbital energy near-degeneracy and overlap contributions to covalency. For these complexes similar levels of covalency are found for cerium(IV) and uranium(IV), whereas thorium(IV) is found to be more ionic, and this trend is independently found in all computational methods employed. The computationally determined trends in covalency of Ce ~ U > Th are also reproduced in experimental exchange reactions of 1-3 with MCI4 salts where 1 and 2 do not exchange with ThCl4, but 3 does exchange with MCl4 (M = Ce, U) and 1 and 2 react with UCl4 and CeCl4, respectively, to establish equilibria. This study therefore provides complementary theoretical and experimental evidence that contrasts to the accepted description that generally lanthanide-ligand bonding in non-zero oxidation state complexes is overwhelmingly ionic but that of uranium is more covalent

    Activation and Deactivation of a Robust Immobilized Cp*Ir-Transfer Hydrogenation Catalyst: A Multielement in Situ X-ray Absorption Spectroscopy Study

    Get PDF
    A highly robust immobilized [Cp*IrCl2]2 precatalyst on Wang resin for transfer hydrogenation, which can be recycled up to 30 times, was studied using a novel combination of X-ray absorption spectroscopy (XAS) at Ir L3-edge, Cl K-edge, and K K-edge. These culminate in in situ XAS experiments that link structural changes of the Ir complex with its catalytic activity and its deactivation. Mercury poisoning and “hot filtration” experiments ruled out leached Ir as the active catalyst. Spectroscopic evidence indicates the exchange of one chloride ligand with an alkoxide to generate the active precatalyst. The exchange of the second chloride ligand, however, leads to a potassium alkoxide–iridate species as the deactivated form of this immobilized catalyst. These findings could be widely applicable to the many homogeneous transfer hydrogenation catalysts with Cp*IrCl substructure

    Influence of transcranial direct current stimulation on the verbal fluency task - an fNIRS-study

    No full text
    61 gesunde Probanden wurden mittels tDCS bifrontal ĂĽber dem DLPFC stimuliert und die Auswirkungen auf den VFT mittels fNIRS gemessen.61 healthy persons were stimulated via tDCS. We measured the influence on the VFT via fNIRS
    corecore