655 research outputs found

    Welcoming Wolves? Governing the Return of Large Carnivores in Traditional Pastoral Landscapes

    Get PDF
    Wolf populations are recovering across Europe and readily recolonize most areas where humans allow their presence. Reintegrating wolves in human-dominated landscapes is a major challenge, particularly in places where memories and experience of coexistence have been lost. Despite the observed expansion trends, little has been done to prepare communities for the return of these apex predators, or to understand what fosters and perpetuates coexistence. In this study, we present a theoretical framework for resilient coexistence based on four conditions: Effective institutions, large carnivore persistence, social legitimacy, and low levels of risk and vulnerability, nested within the social-ecological systems (SES) concept. To empirically show how the conditions can be manifested and interconnected, and how this knowledge could be used to improve local coexistence capacities, the framework is applied in a case study of human–wolf relations in Spain. We examined three traditionally pastoral landscapes at different states of cohabitation with wolves: uninterrupted presence, recent recolonization, and imminent return. We found that both the perceptions of wolves and the capacity to coexist with them diverged across these states, and that this was largely determined by a diversity of vulnerabilities that have not been recognized or addressed within current management regimes, such as economic precarity and weak legitimacy for governing institutions. Our results illustrate the importance of working in close contact with communities to understand local needs and enhance adaptive capacities in the face of rural transitions, beyond those directly related to wolves. The framework complements emerging tools for coexistence developed by researchers and practitioners, which offer guidance on the process of situational analysis, planning, and resource allocation needed to balance large carnivore conservation with local livelihoods

    Efficient unidirectional nanoslit couplers for surface plasmons

    Full text link
    Plasmonics is based on surface plasmon polariton (SPP) modes which can be laterally confined below the diffraction limit, thereby enabling ultracompact optical components. In order to exploit this potential, the fundamental bottleneck of poor light-SPP coupling must be overcome. In established SPP sources (using prism, grating} or nanodefect coupling) incident light is a source of noise for the SPP, unless the illumination occurs away from the region of interest, increasing the system size and weakening the SPP intensity. Back-side illumination of subwavelength apertures in optically thick metal films eliminates this problem but does not ensure a unique propagation direction for the SPP. We propose a novel back-side slit-illumination method based on drilling a periodic array of indentations at one side of the slit. We demonstrate that the SPP running in the array direction can be suppressed, and the one propagating in the opposite direction enhanced, providing localized unidirectional SPP launching.Comment: 13 pages, 4 figure

    Evaluation of the Self-healing Capability of Ultra-High-Performance Fiber-Reinforced Concrete with Nano-Particles and Crystalline Admixtures by Means of Permeability

    Full text link
    [EN] Self-healing is the capability of a material to repair its damage autonomously. Ultra-High-Performance Fiber Reinforced Concrete (UHPFRC) has potentially higher self-healing properties than conventional concrete because of its lower water/binder content and controlled microcracking due to the high fiber content. This work uses a novel methodology based on the permeability to evaluate autogenous self-healing of UHPFRC and enhanced self-healing, incorporating several additions. To this purpose, one UHPFRC was selected and modified to include alumina nanofibers in 0.25% by the cement weight, nanocellulose (nanocrystals and nanofibers), in a dosage of 0.15% by the cement weight, and 0.8-1.6% of a crystalline admixture. The results obtained show that the methodology proposed allows the evaluation of the self-healing capability of different families of concrete mixes that suffered a similar level of damage using permeability tests adapted to the specific properties of UHPFRC.The authors would like to acknowledge the European Union¿s Horizon 2020 ReSHEALience project (Grant Agreement No. 760824).Doostkami, H.; Roig-Flores, M.; Negrini, A.; Mezquida-Alcaraz, EJ.; Serna Ros, P. (2020). Evaluation of the Self-healing Capability of Ultra-High-Performance Fiber-Reinforced Concrete with Nano-Particles and Crystalline Admixtures by Means of Permeability. Springer. 489-499. https://doi.org/10.1007/978-3-030-58482-5_45489499Homma, D., Mihashi, H., Nishiwaki, T.: Self-healing capability of fibre reinforced cementitious composites. J. Adv. Concr. Technol. 7(2), 217–228 (2009)Maes, M., Snoeck, D., De Belie, N.: Chloride penetration in cracked mortar and the influence of autogenous crack healing. Constr. Build. Mater. 115, 114–124 (2016)Edvardsen, C.: Water Permeability and Autogenous Healing of Cracks in Concrete, vol. 96 (1999)De Belie, N., et al.: A review of self-healing concrete for damage management of structures. Adv. Mater. Interfaces 5(17) (2018)Wang, H.L., Dai, J.G., Sun, X.Y., Zhang, X.L.: Characteristics of concrete cracks and their influence on chloride penetration. Constr. Build. Mater. 107, 216–225 (2016)Wang, K., Jansen, D.C., Shah, S.P., Karr, A.F.: Permeability study of cracked concrete. Cem. Concr. Res. (1997)Šavija, B., Schlangen, E.: Autogeneous healing and chloride ingress in cracked concrete. Heron 61(1), 15–32 (2016)Ismail, M., Toumi, A., François, R., Gagné, R.: Effect of crack opening on the local diffusion of chloride in cracked mortar samples. Cem. Concr. Res. 38(8–9), 1106–1111 (2008)Habel, K., Gauvreau, P.: Response of ultra-high performance fiber reinforced concrete (UHPFRC) to impact and static loading. Cem. Concr. Compos. 30(10), 938–946 (2008)Denarié, E., Brühwiler, E.: Strain-hardening ultra-high performance fibre reinforced concrete: deformability versus strength optimization. Restor. Build. Monum. 17(6), 397–410 (2014)Granger, S., Pijaudier-Cabot, G., Loukili, A.: Mechanical behavior of self-healed ultra high performance concrete: from experimental evidence to modeling. In: Proceedings of the 6th International Conference on Fracture Mechanics of Concrete and Concrete Structures, vol. 3, pp. 1827–1834 (2007)Escoffres, P., Desmettre, C., Charron, J.P.: Effect of a crystalline admixture on the self-healing capability of high-performance fiber reinforced concretes in service conditions. Constr. Build. Mater. 173, 763–774 (2018)Sisomphon, K., Copuroglu, O., Koenders, E.A.B.: Self-healing of surface cracks in mortars with expansive additive and crystalline additive. Cem. Concr. Compos. 34(4), 566–574 (2012)Roig-Flores, M., Moscato, S., Serna, P., Ferrara, L.: Self-healing capability of concrete with crystalline admixtures in different environments. Constr. Build. Mater. 86, 1–11 (2015)Roig-Flores, M., Pirritano, F., Serna, P., Ferrara, L.: Effect of crystalline admixtures on the self-healing capability of early-age concrete studied by means of permeability and crack closing tests. Constr. Build. Mater. 114, 447–457 (2016)Ferrara, L., Krelani, V., Carsana, M.: A ‘fracture testing’ based approach to assess crack healing of concrete with and without crystalline admixtures. Constr. Build. Mater. 68, 535–551 (2014)Ferrara, L., Krelani, V., Moretti, F.: On the use of crystalline admixtures in cement based construction materials: from porosity reducers to promoters of self healing. Smart Mater. Struct. 25(8), 1–17 (2016)Cuenca, E., Cislaghi, G., Puricelli, M., Ferrara, L.: Influence of self-healing stimulated via crystalline admixtures on chloride penetration. In: America Concrete Institute, vol. 2018(SP 326), pp. 1–10. ACI Spec. Publ. (2018)Borg, R.P., Cuenca, E., Gastaldo Brac, E.M., Ferrara, L.: Crack sealing capacity in chloride-rich environments of mortars containing different cement substitutes and crystalline admixtures. J. Sustain. Cem. Mater. 7(3), 141–159 (2018)López, J.Á., Serna, P., Navarro-Gregori, J., Camacho, E.: An inverse analysis method based on deflection to curvature transformation to determine the tensile properties of UHPFRC. Mater. Struct. 48(11), 3703–3718 (2014). https://doi.org/10.1617/s11527-014-0434-0López, J.Á.: Characterisation of the Tensile Behaviour of UHPFRC By Means of Four-Point Bending Tests, March 2017Negrini, A., Roig-Flores, M., Mezquida-Alcaraz, E.J., Ferrara, L., Serna, P.: Effect of crack pattern on the self-healing capability in traditional, HPC and UHPFRC concretes measured by water and chloride permeability. In: MATEC Web Conference, vol. 289, p. 01006 (2019

    Cluster Transformation Coefficients for Structure and Dynamics Calculations in n-Particle Systems: Atoms, Nuclei, and Quarks

    Get PDF
    The structure and dynamics of an n-particle system are described with coupled nonlinear Heisenberg's commutator equations where the nonlinear terms are generated by the two-body interaction that excites the reference vacuum via particle-particle and particle-hole excitations. Nonperturbative solutions of the system are obtained with the use of dynamic linearization approximation and cluster transformation coefficients. The dynamic linearization approximation converts the commutator chain into an eigenvalue problem. The cluster coefficients factorize the matrix elements of the (n)-particles or particle-hole systems in terms of the matrix elements of the (n-1)-systems coupled to a particle-particle, particle-hole, and hole-hole boson. Group properties of the particle-particle, particle-hole, and hole-hole permutation groups simplify the calculation of these coefficients. The particle-particle vacuum-excitations generate superconductive diagrams in the dynamics of 3-quarks systems. Applications of the model to fermionic and bosonic systems are discussed.Comment: 13 pages, 5 figures, Wigner Proceedings for Conference Wigner Centenial Pecs, July 8-12, 200

    Life cycle assessment of the environmental performance of conventional and organic methods of open field pepper cultivation

    Get PDF
    Summarization: As the scale of the organic cultivation sector keeps increasing, there is growing demand for reliable data on organic agriculture and its effect on the environment. Conventional agriculture uses chemical fertilizers and pesticides, whilst organic cultivation mainly relies on crop rotation and organic fertilizers. The aim of this work is to quantify and compare the environmental sustainability of typical conventional and organic pepper cultivation systems. Methods: Two open field pepper cultivations, both located in the Anthemountas basin, Northern Greece, are selected as case studies. Life cycle assessment (LCA) is used to quantify the overall environmental footprint and identify particular environmental weaknesses (i.e. unsustainable practices) of each cultivation system. Results are analysed at both midpoint and endpoint levels in order to obtain a comprehensive overview of the environmental sustainability of each system. Attributional LCA (ALCA) is employed to identify emissions associated with the life cycles of the two systems. Results are presented for problem-oriented (midpoint) and damage-oriented (endpoint) approaches, using ReCiPe impact assessment. Results and discussion: At midpoint level, conventional cultivation exhibits about threefold higher environmental impact on freshwater eutrophication, than organic cultivation. This arises from the extensive use of nitrogen and phosphorus-based fertilizers, with consequent direct emissions to the environment. The remaining impact categories are mainly affected by irrigation, with associated indirect emissions linked to electricity production. At endpoint level, the main hotspots identified for conventional cultivation are irrigation and fertilizing, due to intensive use of chemical fertilizers and (to a lesser degree) pesticides. For organic pepper cultivation, the main environmental hotspots are irrigation, machinery use, and manure loading and spreading processes. Of these, the highest score for irrigation derives from the heavy electricity consumption required for groundwater pumping associated with the fossil-fuel-dependent Greek electricity mix. Conclusions: Organic and conventional cultivation systems have similar total environmental impacts per unit of product, with organic cultivation achieving lower environmental impacts in ‘freshwater eutrophication’, ‘climate change’, ‘terrestrial acidification’ and ‘marine eutrophication’ categories. Conventional cultivation has a significantly greater effect on the freshwater eutrophication impact category, due to phosphate emissions arising from application of chemical fertilizers.Presented on: International Journal of Life Cycle Assessmen

    In Silico Evidence for Gluconeogenesis from Fatty Acids in Humans

    Get PDF
    The question whether fatty acids can be converted into glucose in humans has a long standing tradition in biochemistry, and the expected answer is “No”. Using recent advances in Systems Biology in the form of large-scale metabolic reconstructions, we reassessed this question by performing a global investigation of a genome-scale human metabolic network, which had been reconstructed on the basis of experimental results. By elementary flux pattern analysis, we found numerous pathways on which gluconeogenesis from fatty acids is feasible in humans. On these pathways, four moles of acetyl-CoA are converted into one mole of glucose and two moles of CO2. Analyzing the detected pathways in detail we found that their energetic requirements potentially limit their capacity. This study has many other biochemical implications: effect of starvation, sports physiology, practically carbohydrate-free diets of inuit, as well as survival of hibernating animals and embryos of egg-laying animals. Moreover, the energetic loss associated to the usage of gluconeogenesis from fatty acids can help explain the efficiency of carbohydrate reduced and ketogenic diets such as the Atkins diet

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    Brane-World Gravity

    Get PDF
    The observable universe could be a 1+3-surface (the "brane") embedded in a 1+3+\textit{d}-dimensional spacetime (the "bulk"), with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the \textit{d} extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak (∟\sim TeV) level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity "leaks" into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astrophysics, black holes, and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review analyzes the geometry, dynamics and perturbations of simple brane-world models for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall--Sundrum models. We also cover the simplest brane-world models in which 4-dimensional gravity on the brane is modified at \emph{low} energies -- the 5-dimensional Dvali--Gabadadze--Porrati models. Then we discuss co-dimension two branes in 6-dimensional models.Comment: A major update of Living Reviews in Relativity 7:7 (2004) "Brane-World Gravity", 119 pages, 28 figures, the update contains new material on RS perturbations, including full numerical solutions of gravitational waves and scalar perturbations, on DGP models, and also on 6D models. A published version in Living Reviews in Relativit

    Recipient and donor thrombophilia and the risk of portal venous thrombosis and hepatic artery thrombosis in liver recipients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vascular complications, such as HAT, are an important cause of graft loss and recipient mortality. We aimed to characterize post-transplant thrombotic events in a cohort of liver transplant recipients, and identify independent risk factors for these complications.</p> <p>Methods</p> <p>We conducted a thrombophilic study of 293 orthotopic liver transplants performed in the Digestive Surgery Department of the 12 de Octubre Hospital (Madrid, Spain) between January 2001 and December 2006.</p> <p>Results</p> <p>The most frequent post-transplant thrombotic events were HAT (9%) and PVT (1.7%). The one variable associated with post-transplant thrombotic event was a high fibrinogen level in the global cohort of liver transplantation. But toxicity as event post-OLT has been associated with post-transplant thrombotic event in the retrospective group and high fibrinogen level and low protein C levels were associated post-transplant thrombotic event in the prospective group. Liver disease relapse (HR 6.609, p < 0.001), high levels of FVIII (HR 1.008, p = 0.019)) and low levels of antithrombin (HR 0.946, p < 0.001) were associated with poor overall survival (OS).</p> <p>In conclusion, high fibrinogen and decreased protein C levels were associated with allograft thrombosis. Further studies are required in order to assess the clinical relevance of these parameters in prospective studies and to study the effect of anticoagulation prophylaxis in this group of risk.</p
    • …
    corecore