183 research outputs found

    Structural basis for the sequence-specific RNA-recognition mechanism of human CUG-BP1 RRM3

    Get PDF
    The CUG-binding protein 1 (CUG-BP1) is a member of the CUG-BP1 and ETR-like factors (CELF) family or the Bruno-like family and is involved in the control of splicing, translation and mRNA degradation. Several target RNA sequences of CUG-BP1 have been predicted, such as the CUG triplet repeat, the GU-rich sequences and the AU-rich element of nuclear pre-mRNAs and/or cytoplasmic mRNA. CUG-BP1 has three RNA-recognition motifs (RRMs), among which the third RRM (RRM3) can bind to the target RNAs on its own. In this study, we solved the solution structure of the CUG-BP1 RRM3 by hetero-nuclear NMR spectroscopy. The CUG-BP1 RRM3 exhibited a noncanonical RRM fold, with the four-stranded b-sheet surface tightly associated with the N-terminal extension. Furthermore, we determined the solution structure of the CUG-BP1 RRM3 in the complex with (UG)3 RNA, and discovered that the UGU trinucleotide is specifically recognized through extensive stacking interactions and hydrogen bonds within the pocket formed by the b-sheet surface and the N-terminal extension. This study revealed the unique mechanism that enables the CUG-BP1 RRM3 to discriminate the short RNA segment from other sequences, thus providing the molecular basis for the comprehension of the role of the RRM3s in the CELF/Bruno-like family

    Purification and characterization of PAMP-12 (PAMP[9–20]) in porcine adrenal medulla as a major endogenous biologically active peptide

    Get PDF
    AbstractProadrenomedullin N-terminal 20 peptide (PAMP-20) is a potent hypotensive peptide processed from the adrenomedullin (AM) precursor. We developed a specific radioimmunoassay which recognizes the C-terminal region of PAMP-20. Using this radioimmunoassay, the distribution of immunoreactive (ir-) PAMP was determined in porcine tissues. High concentrations of ir-PAMP were observed in the adrenal medulla and in the atrium, and these values were comparable to the corresponding concentrations of ir-AM. The concentration of ir-PAMP was almost the same as that of ir-AM in the kidney, while ir-PAMP was significantly lower than ir-AM in the ventricle, lung, and aorta. Reversed-phase high performance liquid chromatography in each porcine tissue sample revealed that two major peaks of ir-PAMP existed: one emerged at a position identical to that of authentic porcine PAMP-20; the other unknown peak was eluted earlier. The unknown peptide was purified to homogeneity from porcine adrenal medulla, and its complete amino acid sequence was determined. This peptide was found to be PAMP[9–20] with a C-terminal amide structure, and was named PAMP-12. Intravenous injections of PAMP-12 in anesthetized rats showed a significant hypotensive effect in a dose-dependent fashion, and the effect was comparable to that of PAMP-20. These data indicate that PAMP-12, a major component of ir-PAMP, is processed from the AM precursor, as is PAMP-20, and may participate in cardiovascular control

    Update on the pharmacology of calcitonin/CGRP family of peptides:IUPHAR Review 25

    Get PDF
    The calcitonin/calcitonin gene-related peptide (CGRP) family of peptides includes calcitonin, α and β CGRP, amylin, adrenomedullin (AM) and adrenomedullin 2/intermedin (AM2/IMD). Their receptors consist of one of two G protein-coupled receptors (GPCRs), the calcitonin receptor (CTR) or the calcitonin receptor-like receptor (CLR). Further diversity arises from heterodimerisation of these GPCRs with one of three receptor activity-modifying proteins (RAMPs). This gives the CGRP receptor (CLR/RAMP1), the AM1 and AM2 receptors (CLR/RAMP2 or RAMP3) and the AMY1, AMY2 and AMY3 receptors (CTR/RAMPs1-3 complexes, respectively). Apart from the CGRP receptor, there are only peptide antagonists widely available for these receptors and these have limited selectivity, thus defining the function of each receptor in vivo remains challenging. Further challenges arise from the probable co-expression of CTR with the CTR/RAMP complexes and species-dependent splice variants of the CTR (CT(a) and CT(b)). Furthermore, the AMY1(a) receptor is activated equally well by both amylin and CGRP and the preferred receptor for AM2/IMD has been unclear. However, there are clear therapeutic rationales for developing agents against the various receptors for these peptides. For example many agents targeting the CGRP system are in clinical trials and pramlintide, an amylin analogue, is an approved therapy for insulin-requiring diabetes. This review provides an update on the pharmacology of the calcitonin family of peptides by members of the corresponding subcommittee of the International Union of Basic and Clinical Pharmacology and colleagues

    Structural basis for the dual RNA-recognition modes of human Tra2-beta RRM

    Get PDF
    Human Transformer2-beta (hTra2-beta) is an important member of the serine/arginine-rich protein family, and contains one RNA recognition motif (RRM). It controls the alternative splicing of several pre-mRNAs, including those of the calcitonin/calcitonin gene-related peptide (CGRP), the survival motor neuron 1 (SMN1) protein and the tau protein. Accordingly, the RRM of hTra2-beta specifically binds to two types of RNA sequences [the CAA and (GAA)2 sequences]. We determined the solution structure of the hTra2-beta RRM (spanning residues Asn110–Thr201), which not only has a canonical RRM fold, but also an unusual alignment of the aromatic amino acids on the beta-sheet surface. We then solved the complex structure of the hTra2-beta RRM with the (GAA)2 sequence, and found that the AGAA tetra-nucleotide was specifically recognized through hydrogen-bond formation with several amino acids on the N- and C-terminal extensions, as well as stacking interactions mediated by the unusually aligned aromatic rings on the beta-sheet surface. Further NMR experiments revealed that the hTra2-beta RRM recognizes the CAA sequence when it is integrated in the stem-loop structure. This study indicates that the hTra2-beta RRM recognizes two types of RNA sequences in different RNA binding modes

    Extracellular loops 2 and 3 of the calcitonin receptor selectively modify agonist binding and efficacy.

    Get PDF
    Class B peptide hormone GPCRs are targets for the treatment of major chronic disease. Peptide ligands of these receptors display biased agonism and this may provide future therapeutic advantage. Recent active structures of the calcitonin (CT) and glucagon-like peptide-1 (GLP-1) receptors reveal distinct engagement of peptides with extracellular loops (ECLs) 2 and 3, and mutagenesis of the GLP-1R has implicated these loops in dynamics of receptor activation. In the current study, we have mutated ECLs 2 and 3 of the human CT receptor (CTR), to interrogate receptor expression, peptide affinity and efficacy. Integration of these data with insights from the CTR and GLP-1R active structures, revealed marked diversity in mechanisms of peptide engagement and receptor activation between the CTR and GLP-1R. While the CTR ECL2 played a key role in conformational propagation linked to Gs/cAMP signalling this was mechanistically distinct from that of GLP-1R ECL2. Moreover, ECL3 was a hotspot for distinct ligand- and pathway- specific effects, and this has implications for the future design of biased agonists of class B GPCRs

    Calcitonin-typical suppression of osteoclastic activity by amphioxus calcitonin superfamily peptides and insights into the evolutionary conservation and diversity of their structures

    Get PDF
    Calcitonin (CT) is a hormone that decreases serum calcium level by suppressing osteoclastic activity in the vertebrate bone. In vertebrates, the structure-function relationship of CTs has been studied extensively. We recently identified three CT superfamily peptides, Bf-CTFP1 to 3, and clarified the molecular and functional characteristics of their receptor and receptor activity-modifying protein in amphioxus, Branchiostoma floridae. However, the CT activity of Bf-CTFPs has yet to be investigated. In the present study, a functional analysis of Bf-CTFPs was performed using goldfish scales having both osteoclasts and osteoblasts. All Bf-CTFPs suppressed osteoclastic activity via a goldfish CT receptor. Although the primary amino acid sequences of the Bf-CTFPs showed low sequence similarity to vertebrate CTs, Bf-CTFP1 to 3 share three amino acids, Thr25, Thr27, and Pro32-NH2, that are required for receptor binding, with salmon CT. Moreover, homology model analysis revealed that the Bf-CTFPs form alpha-helical structures. The alpha-helical position and length of Bf-CTFP1 and 2 were conserved with those of a highly potent ligand, teleost CT. Interestingly, the composition of the alpha-helix of Bf-CTFP3 differed from those of teleost CT, despite that the action of Bf-CTFP3 on goldfish scales was the same as that of Bf-CTFP1 and 2. Collectively, the present study provides new insights into the structure-function relationship of CT and its functional evolution in chordates. © 2017 Elsevier Inc.Embargo Period 12 month

    Receptor Activity-modifying Protein-directed G Protein Signaling Specificity for the Calcitonin Gene-related Peptide Family of Receptors.

    Get PDF
    The calcitonin gene-related peptide (CGRP) family of G protein-coupled receptors (GPCRs) is formed through the association of the calcitonin receptor-like receptor (CLR) and one of three receptor activity-modifying proteins (RAMPs). Binding of one of the three peptide ligands, CGRP, adrenomedullin (AM), and intermedin/adrenomedullin 2 (AM2), is well known to result in a Gαs-mediated increase in cAMP. Here we used modified yeast strains that couple receptor activation to cell growth, via chimeric yeast/Gα subunits, and HEK-293 cells to characterize the effect of different RAMP and ligand combinations on this pathway. We not only demonstrate functional couplings to both Gαs and Gαq but also identify a Gαi component to CLR signaling in both yeast and HEK-293 cells, which is absent in HEK-293S cells. We show that the CGRP family of receptors displays both ligand- and RAMP-dependent signaling bias among the Gαs, Gαi, and Gαq/11 pathways. The results are discussed in the context of RAMP interactions probed through molecular modeling and molecular dynamics simulations of the RAMP-GPCR-G protein complexes. This study further highlights the importance of RAMPs to CLR pharmacology and to bias in general, as well as identifying the importance of choosing an appropriate model system for the study of GPCR pharmacology.This work was supported by the National Heart Foundation of New Zealand (H.W.), the School of Biological Sciences, University of Auckland seed fund (H.W.), the BBSRC (G.L. - BB/M00015X/1), (D.P. - BB/M000176/1), (C.A.R. - BB/M006883/1), a BBSRC Doctoral Training Partnership (M.H. – BB/JO14540/1), an MRC Doctoral Training Partnership (I.W. - MR/J003964/1), a Warwick Impact Fund (C.W., G.L.), a Warwick Research Development Fund (C.W., G.L.) grant number (RD13301) and the Warwick Undergraduate Research Scholarship Scheme (A.S and R.H).This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by the American Society for Biochemistry and Molecular Biology

    Molecular basis of association of receptor activity-modifying protein 3 with the family B G protein-coupled secretin receptor

    Get PDF
    The three receptor activity-modifying proteins (RAMPs) have been recognized as being important for the trafficking and function of a subset of family B G protein-coupled receptors, although the structural basis for this has not been well established. In the current work, we use morphological fluorescence techniques, bioluminescence resonance energy transfer, and bimolecular fluorescence complementation to demonstrate that the secretin receptor associates specifically with RAMP3, but not with RAMP1 or RAMP2. We use truncation constructs, peptide competition experiments, and chimeric secretin-GLP1 receptor constructs to establish that this association is structurally specific, dependent on the intramembranous region of the RAMP and TM6 and TM7 of this receptor. There were no observed changes in secretin-stimulated cAMP, intracellular calcium, ERK1/2 phosphorylation, or receptor internalization in receptor-bearing COS or CHO-K1 cells in the presence or absence of exogenous RAMP transfection, although the secretin receptor trafficks normally to the cell surface in these cells in a RAMP-independent manner, resulting in both free and RAMP-associated receptor on the cell surface. RAMP3 association with this receptor was shown to be capable of rescuing a receptor mutant (G241C) that is normally trapped intracellularly in the biosynthetic machinery. Similarly, secretin receptor expression had functional effects on adrenomedullin activity, with increasing secretin receptor expression competing for RAMP3 association with the calcitonin receptor-like receptor to yield a functional adrenomedullin receptor. These data provide important new insights into the structural basis for RAMP3 interaction with a family B G protein-coupled receptor, potentially providing a highly selective target for drug action. This may be representative of similar interactions between other members of this receptor family and RAMP proteins
    corecore