1,341 research outputs found

    Limited Influence of Localized Tropical Sea-Surface Temperatures on Moisture Transport into the Arctic

    Get PDF
    Arctic moisture transport is dominated by planetary-scale waves in reanalysis. Planetary waves are influenced by localized Sea-Surface Temperature (SST) features such as the tropical warm pool. Here, an aquaplanet model is used to clarify the link between tropical SST anomalies and Arctic moisture transport. In a zonally uniform setup with no climatological east-west gradients, Arctic moisture transport is dominated by transient planetary waves, as in reanalysis. Warming tropical SSTs by heating the ocean strengthens Arctic moisture transport, mediated mostly by changes in water vapor rather than eddies. This strengthening occurs whether the tropical warming is zonally uniform or localized. Cooling tropical SSTs weakens Arctic moisture transport; however, unlike warming, the pattern matters, with localized cooling producing stronger transport changes owing to nonlinear feedbacks in the surface energy budget. Thus, the simulations show that localized tropical SST anomalies influence Arctic moisture transport differently than uniform anomalies, but only in cooling scenarios.publishedVersio

    Optimal control of risk process in a regime-switching environment

    Full text link
    This paper is concerned with cost optimization of an insurance company. The surplus of the insurance company is modeled by a controlled regime switching diffusion, where the regime switching mechanism provides the fluctuations of the random environment. The goal is to find an optimal control that minimizes the total cost up to a stochastic exit time. A weaker sufficient condition than that of (Fleming and Soner 2006, Section V.2) for the continuity of the value function is obtained. Further, the value function is shown to be a viscosity solution of a Hamilton-Jacobian-Bellman equation.Comment: Keywords: Regime switching diffusion, continuity of the value function, exit time control, viscosity solutio

    Identifying Sparse Low-Dimensional Structures in Markov Chains: A Nonnegative Matrix Factorization Approach

    Full text link
    We consider the problem of learning low-dimensional representations for large-scale Markov chains. We formulate the task of representation learning as that of mapping the state space of the model to a low-dimensional state space, called the kernel space. The kernel space contains a set of meta states which are desired to be representative of only a small subset of original states. To promote this structural property, we constrain the number of nonzero entries of the mappings between the state space and the kernel space. By imposing the desired characteristics of the representation, we cast the problem as a constrained nonnegative matrix factorization. To compute the solution, we propose an efficient block coordinate gradient descent and theoretically analyze its convergence properties.Comment: Accepted for publication in American Control Conference (ACC) Proceedings, 202

    A comparison of 3D particle, fluid and hybrid simulations for negative streamers

    Full text link
    In the high field region at the head of a discharge streamer, the electron energy distribution develops a long tail. In negative streamers, these electrons can run away and contribute to energetic processes such as terrestrial gamma-ray and electron flashes. Moreover, electron density fluctuations can accelerate streamer branching. To track energies and locations of single electrons in relevant regions, we have developed a 3D hybrid model that couples a particle model in the region of high fields and low electron densities with a fluid model in the rest of the domain. Here we validate our 3D hybrid model on a 3D (super-)particle model for negative streamers in overvolted gaps, and we show that it almost reaches the computational efficiency of a 3D fluid model. We also show that the extended fluid model approximates the particle and the hybrid model well until stochastic fluctuations become important, while the classical fluid model underestimates velocities and ionization densities. We compare density fluctuations and the onset of branching between the models, and we compare the front velocities with an analytical approximation

    Biomimetic Supramolecular Polymer Networks Exhibiting both Toughness and Self-Recovery.

    Get PDF
    Biomimetic supramolecular dual networks: By mimicking the structure/function model of titin, integration of dynamic cucurbit[8]uril mediated host-guest interactions with a trace amount of covalent cross-linking leads to hierarchical dual networks with intriguing toughness, strength, elasticity, and energy dissipation properties. Dynamic host-guest interactions can be dissociated as sacrificial bonds and their facile reformation results in self-recovery of the dual network structure as well as its mechanical properties

    Design and analysis of distributed utility maximization algorithm for multihop wireless network with inaccurate feedback

    Get PDF
    Distributed network utility maximization (NUM) is receiving increasing interests for cross-layer optimization problems in multihop wireless networks. Traditional distributed NUM algorithms rely heavily on feedback information between different network elements, such as traffic sources and routers. Because of the distinct features of multihop wireless networks such as time-varying channels and dynamic network topology, the feedback information is usually inaccurate, which represents as a major obstacle for distributed NUM application to wireless networks. The questions to be answered include if distributed NUM algorithm can converge with inaccurate feedback and how to design effective distributed NUM algorithm for wireless networks. In this paper, we first use the infinitesimal perturbation analysis technique to provide an unbiased gradient estimation on the aggregate rate of traffic sources at the routers based on locally available information. On the basis of that, we propose a stochastic approximation algorithm to solve the distributed NUM problem with inaccurate feedback. We then prove that the proposed algorithm can converge to the optimum solution of distributed NUM with perfect feedback under certain conditions. The proposed algorithm is applied to the joint rate and media access control problem for wireless networks. Numerical results demonstrate the convergence of the proposed algorithm

    The majority of Escherichia coli mRNAs undergo post-transcriptional modification in exponentially growing cells

    Get PDF
    Polyadenylation of RNAs by poly(A) polymerase I (PAP I) in Escherichia coli plays a significant role in mRNA decay and general RNA quality control. However, many important features of this system, including the prevalence of polyadenylated mRNAs in the bacterium, are still poorly understood. By comparing the transcriptomes of wild-type and pcnB deletion strains using macroarray analysis, we demonstrate that >90% of E.coli open reading frames (ORFs) transcribed during exponential growth undergo some degree of polyadenylation by PAP I, either as full-length transcripts or decay intermediates. Detailed analysis of over 240 transcripts suggests that Rho-independent transcription terminators serve as polyadenylation signals. Conversely, mRNAs terminated in a Rho-dependent fashion are probably not substrates for PAP I, but can be modified by the addition of long polynucleotide tails through the biosynthetic activity of polynucleotide phosphorylase (PNPase). Furthermore, real-time PCR analysis indicates that the extent of polyadenylation of individual full-length transcripts such as lpp and ompA varies significantly in wild-type cells. The data presented here demonstrates that polyadenylation in E.coli occurs much more frequently than previously envisioned

    Velo-Cardio-Facial Syndrome: 30 Years of Study

    Get PDF
    Velo-cardio-facial syndrome is one of the names that has been attached to one of the most common multiple anomaly syndromes in humans. The labels DiGeorge sequence, 22q11 deletion syndrome, conotruncal anomalies face syndrome, CATCH 22, and Sedlačková syndrome have all been attached to the same disorder. Velo-cardio-facial syndrome has an expansive phenotype with more than 180 clinical features described that involve essentially every organ and system. The syndrome has drawn considerable attention because a number of common psychiatric illnesses are phenotypic features including attention deficit disorder, schizophrenia, and bipolar disorder. The expression is highly variable with some individuals being essentially normal at the mildest end of the spectrum, and the most severe cases having life-threatening and life-impairing problems. The syndrome is caused by a microdeletion from chromosome 22 at the q11.2 band. Although the large majority of affected individuals have identical 3 megabase deletions, less than 10% of cases have smaller deletions of 1.5 or 2.0 megabases. The 3 megabase deletion encompasses a region containing 40 genes. The syndrome has a population prevalence of approximately 1:2,000 in the United States, although incidence is higher. Although initially a clinical diagnosis, today velo-cardio-facial syndrome can be diagnosed with extremely high accuracy by fluorescence in situ hybridization and several other laboratory techniques. Clinical management is age dependent with acute medical problems such as congenital heart disease, immune disorders, feeding problems, cleft palate, and developmental disorders occupying management in infancy and preschool years. Management shifts to cognitive, behavioral, and learning disorders during school years, and then to the potential for psychiatric disorders including psychosis in late adolescence and adult years. Although the majority of people with velo-cardio-facial syndrome do not develop psychosis, the risk for severe psychiatric illness is 25 times higher for people affected with velo-cardio-facial syndrome than that of the general population. Therefore, interest in understanding the nature of psychiatric illness in the syndrome remains strong

    Directional medium access control for ad hoc networks

    Full text link
    corecore