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Design and Analysis of Distributed Utility
Maximization Algorithm for Multihop Wireless

Network with Inaccurate Feedback
Shengbin Liao and Jianhua He

Abstract—Distributed network utility maximization (NUM)
is receiving increasing interests for cross-layer optimisation
problems in multihop wireless networks. Traditional distributed
NUM algorithms rely heavily on feedback information between
different network elements, such as traffic sources and routers.
Due to the distinct features of multi hop wireless networks such
as time varying channels and dynamic network topology, the
feedback information is usually inaccurate, which represent as
a major obstacle for distributed NUM application to wireless
networks. The questions to be answered include if distributed
NUM algorithm can converge with inaccurate feedback, and
how to design effective distributed NUM algorithm for wireless
networks. In this paper we firstly use the infinitesimal per-
turbation analysis technique to provide an unbiased gradient
estimation on the aggregate rate of traffic sources at the routers
based on locally available information. Based on that we propose
a stochastic approximation algorithm to solve the distributed
NUM problem with inaccurate feedback. We then prove that
the proposed algorithm can converge to the optimum solution of
distributed NUM with perfect feedback under certain conditions.
The proposed algorithm is applied to the joint rate and media
access control problem for wireless networks. Numerical results
demonstrate the convergence of the proposed algorithm.

Index Terms—Network utility maximization, multi hop wire-
less networks, dual decomposition, gradient estimation, noise,
infinitesimal perturbation analysis.

I. INTRODUCTION

A. Motivation

THE network utility maximization (NUM) model provides
a new theoretical foundation for network architectural

decisions and cross-layer optimization for wireline networks
[1]. From the NUM model a basic distributed NUM algorithm
has been developed to maximize aggregate source utility based
on the dual decomposition theory [2−9]. The basic distribute
NUM algorithm is consisted of a link algorithm which updates
a shadow price signaling congestion measure at routers, and
a source algorithm that adapts the source rate to congestion
along the route path for the traffic. The convergence of the
algorithm was presented in [1] and [2], which are similar to
gradient-descent method based analysis.

In this paper we consider the application of distributed
NUM framework to solve the cross-layer optimisation and
resource allocation problems in multi hop wireless networks.
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With the distributed operation approach and appropriate
changes, it is believed that distributed NUM model could
provide viable solutions to these problems. However, as dis-
tributed NUM algorithms rely heavily on feedback information
between different network elements, such as traffic sources and
routers, a major problem for distributed NUM algorithms to
be used in multi hop wireless networks is on the inaccurate
feedback information. The inaccurate feedback can be caused
by several reasons, such as time varying and capacity lim-
ited wireless channels, and dynamic network topology. For
example, with multi hop wireless networks, the aggregate
rate of traffic sources used by the link algorithm is hard to
be estimated accurately and the feedback messages could be
delayed or lost. The inaccurate feedback can lead to a large
network performance degrade [10].

We take the network shown in Fig.1 as an example to
illustrate the above problems. Assume that three traffic flows
(path A to F for flow 1, path G to F for flow 2 and path E to
F for flow 3) share the wireless link EF with source rate x1,
x2 and x3. To update link EF price, router E needs to know
the aggregate rate of sources passing through it. However the
aggregate source rate over link EF observed by router E is
x
′

1+x
′

2+x
′

3, where x
′

1, x
′

2 and x
′

3 denotes the estimated source
rate for flows 1 to 3, respectively. There can be a deviation
between the actual and the estimated aggregate source rate.
However, the convergence analysis presented in [1] and [2]
assumed that the aggregate source rates over all the links can
be accurately obtained, for example x1+x2+x3 = x

′

1+x
′

2+x
′

3

will be implicitly assumed in Fig.1. On the other hand, shad-
owing price feedback from the routers to the traffic sources
such as A and G in Fig.1 may also be delayed due to message
queuing or message dropping, which results in an inaccurate
indication of the link congestion measure and can degrade the
network performances.
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Fig. 1. An example multihop wireless networks

With the inaccurate feedback present in wireless networks
as a major obstacle for the application of distributed NUM,
the following two research questions need to be answered:
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1) how to extend the distributed NUM algorithm for wireline
networks to make it work for wireless networks with inaccu-
rate feedback? and 2) if the distributed NUM algorithm can
converge with inaccurate feedback? In this paper we firstly
use the infinitesimal perturbation analysis (IPA) technique
to provide an unbiased gradient estimation on the aggregate
rate of traffic sources at the routers based on the locally
available information, and analyse the impact of inaccurate
feedback on the convergence of distributed NUM algorithms.
IPA technique has been shown to be capable of providing
performance sensitivities (or gradients) from observed values
of a single sample path [11]. Based on the above analysis
we propose a stochastic approximation algorithm to solve the
distributed NUM problem with inaccurate feedback for multi
hop wireless networks. We then proved that the proposed
algorithm can converge to the optimum solution of distributed
NUM with perfect feedback under certain conditions. The
proposed algorithm is applied to investigate the joint rate
and media access control problem for multi hop wireless
networks. Numerical results demonstrate that the effectiveness
and convergence of the proposed algorithm for multi hop
wireless networks.

B. Related work

In the literature there have been many extended NUM mod-
els and resultant distributed algorithms proposed for network
architectural decisions, cross-layer optimization and resource
allocation in wireline and wireless networks [3 − 13]. All of
these works assumed or implicitly assumed that the gradient
estimation and feedback prices are perfect, i.e., the rate of
every source passing through every link can be accurately
estimated and every source can obtain the exact prices of links
along its route path. However such assumptions are not true
in practical wireless networks. There were some preliminary
works which studied the stochastic stability and impacts of
random errors on the distributed NUM algorithm. In Kelly’s
seminal work [1], the authors studied the stochastic stability
by introducing linear stochastic perturbations in the algorithm
to represent random network loads. On the other hand, [14]
and [15] considered NUM problems with time-varying channel
state information.

[16], [17] and [18] studied the impact of inaccurate gradient
estimation (or random error) on the NUM algorithms, which
are most close to our work. In [16], the authors added an
estimation error into the link price and then treated the
estimation error as inaccuracy of the gradient in the distributed
NUM algorithm. In contract, in this paper the observed values
of the link price are averaged over the real-time sample path
and then the mean value is used as the estimation of gradient.
As illustration next, our link price estimation is unbiased. The
estimation in [16] can not be guaranteed to be unbiased and
the possible measurement noise at link was not considered.

In [17], the aggregated load was estimated through online
measurement with non-negligible noises, which is similar to
our process. However, the authors in [17] added an random
item as noise to the online observed value but did not consider
the estimation error of link price.

In [18], the authors divided theoretically the gradient es-
timation procedure into two parts, namely biased estimation
and martingale difference noise [22]; moreover, as mentioned
in [18], their gradient estimation may be biased or unbiased. It
is difficult for online implementation. However, our proposed
method can provide easy unbiased estimation based on online
observations by using IPA and it is amenable to online
implementation.

The rest of the paper is organized as follows. After a brief
description of IPA in Section II, Section III presents the basic
NUM model and the distributed NUM algorithm. Section
IV provides the gradient estimation based on the IPA and
the convergence analysis of stochastic approximation of the
distributed NUM algorithm in present of noisy feedbacks. In
Section V, we apply the proposed method and algorithm to
joint rate and media access control problem for multi hop
wireless networks. Section VI concludes the paper.

II. PRELIMINARIES

Let θ be a parameter of a discrete-event dynamic system
(DEDS); and ω be a random vector representing all of the
randomness in the system; the underlying probability space
is denoted as (Ω,F ,P). Typically, the components of ω are
independently and identically distributed random variables. Let
h = h(θ, ω) be the general representation of a sample perfor-
mance of interest obtained from a sample path realization. In
many cases, there may exist more meaningful representation
of θ and ω. For example, in this paper, θ could be the rate of
a user’s transmission and ω could be the stochastic noisy.

Let T0 = 0, T1, ..., Tn.... be the sequence of the state
transition instances. We consider a sample path of the system
in a finite period [0, TN ). The performance measured on
this sample path is denoted as hN (θ, ω). In most cases,
we are interested in the expected value of the performance
hN (θ) = E[hN (θ, ω)], and sensitivity analysis is concerned
with estimating ∂hN (θ)/∂θ, if we assume that E[hN (θ, ω)]
exits, where E denotes the expectation with respect to the
probability measure P .

The goal of perturbation analysis is to obtain the perfor-
mance derivative with respect to θ by analyzing a single
sample path (θ, ω). That is, we want to derive an quantity
based on a sample path (θ, ω) and use it as an estimate
of ∂hN (θ)/∂θ. In infinitesimal perturbation analysis[11], the
quantity is estimated as (∂hN (θ, ω)/∂θ), where the sample
derivative calculated from a single sample path is defined as

∂hN (θ, ω)

∂θ
= lim

∆θ→0

hN (θ + ∆θ, ω)− hN (θ, ω)

∆θ
. (1)

This quantity is called the infinitesimal perturbation analysis
estimate. The estimate is said to be unbiased if and only if

E[
∂hN (θ, ω)

∂θ
] = ∂hN (θ)/∂θ =

∂E[hN (θ, ω)]

∂θ
. (2)

This means that the unbiasedness of the IPA is equivalent to
the interchangeability of the two operators E and (∂/∂θ). The
primary application of IPA is gradient estimation, typically, a
sample path (θ, ω) is observed, and then a perturbed path (θ+
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∆θ, ω) is constructed for estimating the gradient ∂hN (θ)/∂θ
with ∆θ → 0 and changes of hN (θ) due to a finite perturbation
with ∆θ 6= 0. The interchangeability, i.e., eq(2), does not
always hold for all systems and performance measures, but this
can be satisfied by imposing some conditions on h(θ, ω)[23].
Therefore, the two basic issues for IPA are[24]:

(i) To develop a simple algorithm that determines the sample
derivative (1) by analyzing a single sample path of a discrete
event system; and

(ii) To prove that the sample derivative is unbiased, i.e., the
interchangeability (2) holds.

III. PROBLEM FORMULATION

A. Optimal flow control via network utility maximization

Consider a communication network with J links, each with
a fixed capacity of cj bps for j ∈ [1, J ]. Let a route r be a
non-empty subset of J , and R be the set of possible routes.
Set Ajr = 1 if j ∈ r, so that link j lies on route r, and set
Ajr = 0 otherwise. This defines a 0-1 routing matrix A =
(Ajr, j ∈ J, r ∈ R).

Associate a route r with a user, and suppose that if a rate xr
is allocated to user r then this has utility Ur(xr) to the user.
Assume that the utility Ur(xr) is increasing, strictly concave
and continuously differentiable over the range m ≤ xr ≤M ,
where m and M are nonnegative constants.

Let U = (Ur(xr), r ∈ R) and C = (cj , j ∈ J). Under this
model the network seeks a rate allocation x = (xr, r ∈ R)
which solves the following optimization problem.

max
∑
r∈R

Ur(xr)

subject to Ax ≤ C
x ≥ 0

(3)

The above problem (3) is usually referred to as basic NUM
problem, which is first presented by Kelly et al.[1] and is
extended by Low et al.[2]. Over the past few years, the basic
NUM model has been extended to much richer varieties and
has found many applications in wired and wireless networks.

B. Solving Optimization Problem using Lagrange Duality

To solve problem (3) directly, we have to know some
global information such as the utility functions and routes
of all the users in the network. Typically, this information
is not available. Thus, it is important to devise distributed
solutions, where each user adapts its transmission rate based
only on local information. In the rest of this section, we will
describe distributed algorithms based on the Lagrangian dual
decomposition.

To this end, we first form the Lagrangian for problem (3)
as:

L(x,µ) =
∑
r∈R

Ur(xr)− µT (Ax− C)

where µ = (µj , j ∈ J) is a vector of Lagrange multipliers
associated with flow constraints on routes of all the users.

Then, the Lagrangian dual function for problem (3) is

D(µ) = max
xr≥0

L(x,µ)

= max
xr≥0

{ ∑
r∈R

Ur(xr)− µT (Ax− C)
}

= max
xr≥0

{ ∑
r∈R

Ur(xr)− xr
∑
j∈J

Ajrµj

}
+ µTC

(4)
Thus, the dual problem for primal problem (3) is

min
µ≥0

D(µ) (5)

In the dual formulation, Lagrange multiplier µj can be
interpreted as congestion price on link j for violating the
corresponding constraint. A key observation is that all sources
can compute their optimal rate individually, based on the total
congestion price

∑
j∈J Ajrµj , using the following source rate

algorithm

xr = arg max
xr≥0

{∑
r∈R

Ur(xr)− xr
∑
j∈J

Ajrµj

}
(6)

To solve the dual problem (5), one can use the following
projected gradient method

µj(t+ 1) =
[
µj(t)− αj(cj −

∑
j∈J

Ajrxr)
]+

(7)

where αj is a positive scalar stepsize, and [a]
+ denotes the

projection of a onto the set R+ of non-negative real numbers.
According to the above problem formulation, the solution

of the optimal source rates and congestion prices of links can
be solved iteratively in equation (6) and (7), respectively. This
suggests treating the network links and the sources as pro-
cessors in a distributed computation system to solve the dual
problem (5). When strong duality holds, the primal problem
can be equivalently solved by solving the dual problem.

The algorithm based on (6)-(7) is called primal-dual algo-
rithm, which can be abstracted as the following general form
on primal variables x and dual variables µ with time index t:

Deterministic primal-dual algorithm (DPDA): In the
primal-dual algorithm, the users rates xr and the link prices
µj are updated on the same time scale:

xr(t+ 1) =
[
xr(t) + α(t)(Lxr

(x(t), µ(t)))
]+

, ∀r ∈ R
(8)

µj(t+ 1) =
[
µj(t)− β(t)(Lµj

(x(t), µ(t)))
]+

, ∀j ∈ J
(9)

where α(t) and β(t) are positive scalar stepsizes, Lxr
(.)

and Lµj
(.) are the gradients or subgradients of L with respect

to xr and µj , respectively.
It is clear that to implement the distributed algorithms (8)-

(9), a critical issue is computing the gradients or subgradients
of L, which depend on some feedback information. For
example, in algorithms (6)-(7), each source needs to obtain
the link congestion prices along its route path to update its
data rate and each router needs to estimate the aggregated
source rates and update link congestion price. But in practical
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applications, due to external effects such as fading, user mo-
bility, packet queueing and dropping, feedback messages are
likely to be delayed and may not accurately reflect the actual
network conditions. In the presence of noisy feedback, the
gradients or subgradients Lxr

(.) and Lµj
(.) are stochastic. Let

L̂xr
(.) and L̂µj

(.) denote the corresponding estimators of the
gradients or subgradients Lxr

(.) and Lµj
(.). If the gradients

or subgradients are estimators in deterministic primal-dual
algorithm, then, the stochastic version of the algorithm is given
as follows.

Stochastic primal-dual algorithm:

xr(t+ 1) =
[
xr(t) + α(t)(L̂xr

(x(t), µ(t)))
]+

, ∀r ∈ R
(10)

µj(t+ 1) =
[
µj(t)− β(t)(L̂µj

(x(t), µ(t)))
]+

, ∀j ∈ J
(11)

In what follows, we shall focus on the estimation of
gradients or subgradients under which the general algorithm,
in the presence of noisy feedback, converges to the equilibrium
point obtained by deterministic algorithms.

IV. STOCHASTIC APPROXIMATION ALGORITHM AND
CONVERGENCE ANALYSIS

A. Stochastic approximation algorithm
The seminal work in stochastic approximation algorithms

was conducted by Robbins and Monro on finding the root
of a function when the function is unknown and only noise-
corrupted observations at arbitrary values of the argument can
be made. The basic stochastic approximation algorithm is anal-
ogous to the steepest-descent gradient method in deterministic
optimization, except that here the gradient does not have an
analytic expression and must be estimated. SA algorithms
based on the steepest-descent gradient method are of the form:

θ(t+ 1) =
[
θ(t) + α(t)g(t)

]+
(12)

Where an approximation θ(t) for the optimal solution is
updated to θ(t+ 1) using an estimator g(t) of the gradient of
the objective function evaluated at θ(t), and α(t) is a sequence
of positive scaler stepsizes such that

α(t) > 0, α(t)→ 0,
∑
t
α(t) =∞, and

∑
t
α(t)2 <∞ (13)

In what follows, we will study the SA method with IPA
gradient estimation, as applied to the algorithms (10)-(11) to
approximate the optimal solution obtained by the algorithms
(8)-(9). Let ω, ψ are the stochastic noisy presented in the
algorithms (10)-(11), then, L̂xr

(.) and L̂µj
(.) can be expressed

as L̂xr
(x(t), µ(t);ω) and L̂µj

(x(t), µ(t);ψ). Assume that ω, ψ
are continuous random variables that are finite with probability
1. As noted in section II, we would like to determine condi-
tions under which IPA is valid, that is,

Lxr
(x(t), µ(t)) = ∂E[L̂(x(t),µ(t);ω)]

∂xr
= E[∂L̂(x(t),µ(t);ω)

∂xr
],∀r ∈ R

(14)

Lµj (x(t), µ(t)) = ∂E[L̂(x(t),µ(t);ψ)]
∂µj

= E[∂L̂(x(t),µ(t);ω)
∂µj

],∀j ∈ J
(15)

Typically, the condition (13) guarantees convergence of
the algorithm (12). It is clear from the condition (13) that
the decreasing stepsizes imply that the rate of change of
θ(t) slows down as t goes to infinity. The idea is that the
decreasing stepsizes would provide an implicit averaging of
the observations. The linear least squares estimator of the
mean value of a random variable can be used to explain how
the decreasing stepsizes actually leads to an averaging of the
observations. For example, let ϕ(t) be a sequence of i.i.d,
random variables with finite variance and unknown mean value
of θ, given observation ϕ(i), 1 ≤ i ≤ n, then, the linear least
squares estimator of θ is

θ(n) =
n∑
i=1

ϕ(i)
n (16)

From equation (16), we have,

θ(n+ 1) =
n+1∑
i=1

ϕ(i)
(n+1) =

n∑
i=1

ϕ(i)
(n+1) + ϕ(n+1)

(n+1)

= n
n+1

n∑
i=1

ϕ(i)
n + ϕ(n+1)

(n+1)

=
n∑
i=1

ϕ(i)
n −

1
n+1

n∑
i=1

ϕ(i)
n + ϕ(n+1)

(n+1)

= θ(n) + α(n)[ϕ(n+ 1)− θ(n)]

(17)

Where θ(0) = 0 and α(n) = 1/(n+1). Thus, equation (16) is
equivalent to equation (17), i.e., the use of decreasing stepsizes
α(n) = 1/(n+1) yields an estimator that is equivalent to that
obtained by a direct averaging of the observations. This is
driving us to update the algorithms (10)-(11) by averaging the
estimators of the gradient from past observational information.
Based on this, the SA algorithm to search for the optimal
solution obtained by the algorithms (8)-(9) using an IPA
estimator is as follows

Stochastic approximation of deterministic primal-dual
algorithm (SPDA):
• Initialization: Choose the initial values of dual variables
µj(0),∀j ∈ J
at each iteration t = 0, 1, 2, . . .

• SA algorithm for source rate updating:

L̂xr
(x(t), µ(t);ω(t)) = 1

t+1

t∑
i=0

(L̂xr
(x(i), µ(i);ω(i))),∀r ∈ R

(18)

xr(t+ 1) =
[
xr(t) + α(t)(L̂xr

(x(t), µ(t);ω(t)))
]+

,∀r ∈ R
(19)

• SA algorithm for link shadow price updating:

L̂µj (x(t), µ(t);ψ(t)) = 1
t+1

t∑
i=0

(L̂µj (x(i), µ(i);ψ(i))),∀j ∈ J
(20)

µj(t+ 1) =
[
µj(t)− α(t)(L̂µj (x(t), µ(t);ψ(t)))

]+

,∀j ∈ J
(21)
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Here we use the same stepsize α(t) in (19) and (21) for the
sake of convenience and the simplicity of the notations, this
can not incur an loss of generality.

B. The validity of the IPA gradient estimator

In this section we establish the unbiasedness of the IPA
gradient estimators (18) and (20) for the above stochastic
approximation algorithm. To this end, we impose the following
assumption:

A1. Assume that the utility function Ur(xr) is increasing,
strictly concave and twice continuously differentiable over the
range m ≤ xr ≤ M , where m and M are nonnegative
constants.

A2. The sequences of noise terms {ω(t)} and {ψ(t)}
in the estimate of Lxr

(x(t), µ(t)) and Lµj
(x(t), µ(t)) are

independent across iterations, moreover, such that

E[L̂xr
(x(t), µ(t);ω)|Ft] = Lxr

(x(t), µ(t)) + ω(t),∀t ≥ 0

E[L̂µj
(x(t), µ(t);ψ)|Ft] = Lµj

(x(t), µ(t)) + ψ(t),∀t ≥ 0

where Ft denotes the σ-algebra filtration generated by
{(xr(i), µj(i)),∀i ≤ t}.

Theorem 1: Under condition A1 and A2, then, the IPA
estimators (18) and (20) in algorithms (18)-(21) are unbiased.

Proof: See Appendix A.

C. Convergence analysis

In this section, we show that the proposed stochastic ap-
proximation algorithm converges with probability one to the
optimal points under some conditions. To this end, we impose
the following assumptions:

A3. The stepsize α(t) is chosen to satisfy the equation (13).
A4. suptE||L̂xr

(x(t), µ(t);ω)||2 <∞,
suptE||L̂µj (x(t), µ(t);ψ)||2 <∞.

A5. The noise terms {ω(t)} and {ψ(t)} in the estimate of
Lxr (x(t), µ(t)) and Lµj (x(t), µ(t)) are such that∑∞

t=0 |α(t)ω(t)| <∞ w.p.l,
∑∞
t=0 |α(t)ψ(t)| <∞ w.p.l

Theorem 2: Under conditions A1-A5, the iterative sequences
{(xr(t), µj(t)), t = 1, 2, . . .}, generated by SPDA, converge
with probability one to the optimal solution of primary prob-
lem generated by DPDA.

Proof: The convergence analysis technique here is inspired
by those provided in [19] [20] [18]. These proofs all consist
of two steps. The difference between our proof and [19] is
that our proof uses the saddle points of Lagrangian function to
build the recurrent area of the iterative sequences generated by
the algorithm, while the optimal dual solutions were directly
adopted for this in [19]. The difference between our proof
and [20] [18] is that we directly give an unbiased gradient
estimation, while the gradient estimation was divided into two
parts of the biased estimation and the martingale difference
noise [22] in [20] and [18] . The complete proof please refer
to appendix B.

V. APPLICATION TO JOINT RATE CONTROL AND MEDIA
ACCESS CONTROL

In this section, we apply the proposed the estimation method
and the approximate algorithm to the cross-layer design prob-
lem for joint rate control and media access control in wireless
networks, which has been a subject of strong interests in
the past decade [21][3]. Here we focus on the impact of
estimation errors on the convergence of distributed NUM
algorithm. Specially, we consider a multi-hop wireless network
with network topology as shown in Fig.1, and assume all the
links have the same capacity with c0l = 1, l ∈ L, and all
flows r have the same utility function Ur(xr) = log(xr). We
further assume that there are three network flows, which are
A → B → C → D → E → F , B → C → D → E → F
and G → D → E → F . Thus, we have routing matrix R as
follows

R =


1 0 0
1 1 0
1 1 0
1 1 1
1 1 1
0 0 1


We assume that each node has the same transmission and

interference range, and use a conflict graph [21] to capture
the contention relations among the links. In a conflict graph,
each vertex represents a link and an edge between two vertices
denotes that transmission along those links contend with each
other and these links cannot transmit at the same time. In a
conflict graph, a complete subgraph is referred to as a clique.
A maximal clique is defined as a clique that is not contained in
any other cliques, the vertices in a maximal clique represent
a maximal set of mutually contending wireless links, along
which at most one flow can transmit at any given time. Fig.2
shows the conflict graph of Fig.1.

1

2 3 5

4 6

Fig. 2. The conflict graph of Fig.1

Assume the contention graph can be decomposed into N
maximal cliques, each clique n contains Ln ⊂ L links.
Based on the concept of clique, we define the contention
matrix F = (Fnl,n∈N,l∈L) as in [21], Fnl = 1 if l ∈ L
and Fnl = 0 otherwise. Therefore, from Fig.2, we have the
contention matrix F for Fig.1 as follows

F =

 1 1 1 0 0 0
0 1 1 1 1 0
0 0 1 1 1 1


Thus, the cross-layer optimization problem for joint rate and

MAC control can be formulated as following:
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maxxr≥0

∑
r Ur(xr)

subject to Rx ≤ c Fc ≤ 1
c = (cl, l ∈ L), cl = 0 or c0l

(22)

A. Distributed algorithm

As illustrated in Section III, we use a dual decomposition
approach to solve problem (22). By relaxing the first constrain,
the dual function is given by

D(p) = maxxr,cl

∑
r Ur(xr) + pT (c−Rx)

subject to Fc ≤ 1 cl = 0 or c0l
(23)

Where the pT is the vector of Lagrange multipliers with an
interpretation of congestion price. Thus, the dual problem of
the primary problem (22) can be defined as

minp≥0D(p) (24)

To solve the dual problem (24), from the problem (23) we
can know that this maximization can be decomposed into the
congestion control problem

maxxr

∑
r Ur(xr)− pTRx (25)

and the scheduling problem

maxc p
T c

subject to Fc ≤ 1 cl = 0 or c0l
(26)

Therefore, we can obtain a distributed NUM algorithm as
shown below.

Joint rate and congestion price control algorithm
(RPCA):
• Initialization: Choose the initial values of dual variables
pl(0),∀l ∈ L
at each iteration t = 0, 1, 2, . . .

• Each source r updates its rate as:

xr(t+ 1) = U
′−1

r (
∑
l

pl(t)Rlr) (27)

• Each link l updates its congestion price as:

pl(t+ 1) = [pl(t) + γ(t)(
∑
r
Rlrxr(t+ 1)− cl(t+ 1))]+

(28)
Remark: The above distributed NUM (27)-(28) was first

presented in [21]. It is noted that it uses an implicit assump-
tion, i.e., each source r can exactly obtain the congestion
prices (pl, l ∈ r) along its route path and each link l can
exactly estimate the aggregate source rate

∑
r Rlrxr through

it. However, it is difficult to obtain these information exactly in
practice implementation. Thus, next we consider the impact of
estimation errors on the convergence of the above distributed
NUM.

The stochastic approximation of the above distributed NUM
with estimation errors by using IPA as in the algorithm SPDA
can be formulated as follows.

Stochastic Approximation of Joint rate and congestion
price control algorithm (SARP:)
• Initialization: Choose the initial values of dual variables
pl(0),∀l ∈ L

At each iteration t = 0, 1, 2, . . .
• Each source r estimate the link prices along its route

path:

pl(t) = 1
t+1

t∑
i=0

(pl(x(i);ω(i))), ∀r ∈ R (29)

• Each source r updates its rate as:

xr(t+ 1) = U
′−1

r (
∑
l

pl(t)Rlr) (30)

• Each link l estimates the source rate through it:

xr(t+ 1) = 1
t+1

t∑
i=0

(xr(i);ψ(i))), ∀j ∈ J (31)

• Each link l updates its congestion price as:

pl(t+ 1) = [pl(t) + γ(t)(
∑
r
Rlrxr(t+ 1)− cl(t+ 1))]+

(32)

B. Numerical results

In this subsection, we show the convergence performance
of the algorithm SARP and compare the result with algorithm
RPCA with two network scenarios. We assume that feedback
noise used in our experiments is zero mean white Gaussian
noise with standard deviation σ.

The first considered network topology is depicted in Fig.1.
In Fig.3 and Fig.4 the convergence of the source rates for the
three flows presented in Fig.1 is plotted for RPCA algorith
with stepsize of 0.05 and 0.1, respectively. Fig.5 and Fig.6
present convergence behavior for SARP algorithm with σ =
0.05, and stepsize of 0.05 and 0.1, respectively. Fig.7 and Fig.8
present convergence behavior for SARP algorithm with σ =
0.1, and stepsize of 0.05 and 0.1, respectively.

From Fig.3 and Fig.4, we can see that all the three flows
almost converge to the same values, respectively. However,
with stepsize γ = 0.1 the convergence speed is faster com-
pared to the case with stepsize γ = 0.05. This conclusion still
holds even when feedback noise is presented in the algorithm
SARP, which can be observed from Fig.5 to Fig.8.

Furthermore, Fig.3 to Fig.8 show that algorithm SARP
almost converges to the same optimal values of algorithm
RPCA, although there is about 5% introduced feedback noise.
This validates that the distributed NUM algorithms are robust
to stochastic perturbations. But from Fig.5 to Fig.8, we can
also observe that feedback noise can cause oscillations around
the optimal values. An increase in the standard deviation σ
causes a larger oscillation. According to the above observa-
tions we believe efficient error control techniques should be
applied to minimize the adverse impact of feedback noise.

Next we consider another network topology as depicted in
Fig.9. It is assumed that there are three flows A → B →
D → E, B → C → E and C → E. In Fig.10 and Fig.11 the
convergence of the source rates for the three flows is shown
for RPCA algorith with stepsize of 0.05 and 0.1, respectively.
From Fig.10 and Fig.11, we can see that all the three flows
almost converge to the same values again. However, with
stepsize γ = 0.1 the convergence speed is faster compared
to the case with stepsize γ = 0.05.



7

0 10 20 30 40 50 60 70 80
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of iterations (stepsize γ = 0.05)

S
o
u
rc

e
 r

a
te

s

 

 

Flow 1

Flow 2

Flow 3

Fig. 3. The convergence of algorithm RPCA with γ = 0.05
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Fig. 4. The convergence of algorithm RPCA with γ = 0.1
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Fig. 5. The convergence of algorithm SARP with σ = 0.05 and γ = 0.05
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Fig. 6. The convergence of algorithm SARP with σ = 0.05 and γ = 0.1
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Fig. 7. The convergence of algorithm SARP with σ = 0.1 and γ = 0.05
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Fig. 8. The convergence of algorithm SARP with σ = 0.1 and γ = 0.1
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Fig. 9. The second network topology
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Fig. 10. The convergence of algorithm RPCA with γ = 0.05
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Fig. 11. The convergence of algorithm RPCA with γ = 0.1

Fig.12 and Fig.13 show convergence performance for SARP
algorithm with σ = 0.05, and stepsize of 0.05 and 0.1,
respectively. Fig.14 and Fig.15 show convergence performance
for SARP algorithm with σ = 0.1, and stepsize of 0.05 and
0.1, respectively. Fig.10 to Fig.15 also show that algorithm
SARP almost converges to the same optimal values of algo-
rithm RPCA even with some introduce feedback noise. These
performances are similar to those presented in Fig.3 to Fig.8.
These validate the conclusion that our proposed distributed
NUM algorithms are robust to stochastic perturbations.
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Fig. 12. The convergence of algorithm SARP with σ = 0.05 and γ = 0.05
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Fig. 13. The convergence of algorithm SARP with σ = 0.05 and γ = 0.1
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Fig. 14. The convergence of algorithm SARP with σ = 0.1 and γ = 0.05
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Fig. 15. The convergence of algorithm SARP with σ = 0.1 and γ = 0.1

VI. CONCLUSION

Distributed NUM has found many applications to the re-
source allocation and cross layer design optimization problems
for wireline networks. In this paper we consider the appli-
cation of distributed NUM for multiple wireless networks.
Especially we are interested in the impacts of inaccurate
feedback on distributed NUM algorithms and design of ef-
fective distributed NUM algorithms for multi hop wireless
networks with inaccurate feedback. To address these problems
we firstly proposed a gradient estimation method based on
the infinitesimal perturbation analysis technique, which can
provide an unbiased estimation based on the locally observed
data. Then we proposed a stochastic approximation algorithm
to solve the distributed NUM problem when feedback noise
(due to the inaccurate aggregate rate estimation and feedback
prices) is present. The convergence of the proposed algorithm
to the optimal solution of the distributed NUM problem was
proved. We applied the proposed algorithm to a joint rate and
media access control problem in multihop wireless networks.
Numerical results validate our theoretical analysis and showed
that the proposed distributed algorithm is robust to feedback
noises.



9

APPENDIX A
PROOF OF THEOREM 1

Proof: In the case L̂xr
(x(t), µ(t);ω(t)), we have, for given

µ(t) and 4xr(t),

4L̂xr = L̂xr (x(t) +4xr(t), µ(t);ω(t))− L̂xr (x(t), µ(t);ω(t))

= 1
t

t−1∑
i=0

(L̂xr
(x(i) +4xr(i), µ(i);ω(i))− L̂xr

(x(i), µ(i);ω(i)))

= E[L̂xr
(x(t) +4xr(t), µ(t);ω)|Ft]− E[L̂xr

(x(t), µ(t);ω)|Ft]
= Lxr

(x(t) +4xr(t), µ(t)) + ω(t)− Lxr
(x(t), µ(t))− ω(t)

≤ K|4xr(t)|
where K is a constant, the last two steps follow from con-
ditions A2 and A1, respectively. Thus, 4L̂xr

is Lipschitz
continuous and the unbiasedness result follows directly from
the known fact (see [25], Lemma A2, p.70) that an IPA
derivative is unbiased if (i) The sample derivative exists w.p.1,
and (ii) The random function is Lipschitz continuous and the
Lipschitz constant has a finite first moment.

Similarly, we can prove L̂µj
(x(t), µ(t);ψ(t)) is unbiased.

Moreover, the linear constraints in primary problem (3) can be
extended to more general nonlinear cases which are convex,
continuously differentiable functions, the unbiasedness result
still holds.

APPENDIX B
PROOF OF THEOREM 2

Proof: Let (x∗, µ∗) is the optimal solution to DPDA, then
(x∗, µ∗) is a saddle point for Lagrange function L(x, µ) of
primary problem, it follows

L(x, µ∗) ≤ L(x∗, µ∗) ≤ L(x∗, µ) (33)

Define the function V (·, ·) as follows:

V (x, µ)
.
= ‖x− x∗‖2 + ‖µ− µ∗‖2 (34)

where ‖ denotes the Euclidean norm.
For any given γ, define the set Hγ as follows:

Hγ
.
= {(x, µ) : L(x∗, µ)− L(x, µ∗) ≤ γ} (35)

In the following, the proof consists of two steps.
Step 1 we will show that ∀γ, Hγ is recurrent for

{(x(t), µ(t))}.
Step 2 we will show that (x(t), µ(t)) eventually reside in

Hγ almost surely.
Step 1: From equation (18) and (19), we have

‖x(t+ 1)− x∗‖2 = ‖
[
x(t) + α(t)(L̂x(t)(x(t), µ(t);ω(t)))

]+

− x∗‖2

≤ ‖x(t) + α(t)(L̂x(t)(x(t), µ(t);ω(t)))− x∗‖2
= ‖x− x∗‖2 + 2α(t)(x− x∗)T L̂x(t)(x(t), µ(t);ω(t)))

+α2(t)‖L̂x(t)(x(t), µ(t)))‖2
= ‖x− x∗‖2 + 2α(t)(x− x∗)T [Lx(t)(t) + ω(t)]

+α2(t)‖L̂x(t)(x(t), µ(t);ω(t)))‖2

where we use the fact the projection [·]+ is non-expansive
[26] in the above inequality and condition A2 in the last
step. Lx(t)(t) and ω(t) are the vectors of Lxr

(t) and ωr(t),
respectively. Similarly, with equation (20) and (21), we have

‖µ(t+ 1)− µ∗‖2 ≤ ‖µ(t)− α(t)(L̂µ(t)(x(t), µ(t);ψ(t)))− µ∗‖2
= ‖µ− µ∗‖2 − 2α(t)(µ− µ∗)T L̂µ(t)(x(t), µ(t);ψ(t)))

+α2(t)‖L̂µ(t)(x(t), µ(t);ψ(t)))‖2
= ‖µ− µ∗‖2 − 2α(t)(µ− µ∗)T [Lµ(t)(t) + ψ(t)]

+α2(t)‖L̂µ(t)(x(t), µ(t);ψ(t)))‖2

By the assumption A4, we know that both
‖L̂x(t)(x(t), µ(t);ω(t)))‖2 and ‖L̂µ(t)(x(t), µ(t);ψ(t)))‖2
are bounded. Without loss of generality, we can
assume that ‖L̂x(t)(x(t), µ(t);ω(t)))‖2 ≤ C1 and
‖L̂µ(t)(x(t), µ(t);ψ(t)))‖2 ≤ C2, where C1 and C2

are positive constants. According to this and the above
inequalities, we have

V (x(t+ 1), µ(t+ 1))
= ‖x(t+ 1)− x∗‖2 + ‖µ(t+ 1)− µ∗‖2
≤ V (x(t), µ(t)) + 2α(t)[(x− x∗)TLx(t)(x(t), µ(t))
−(µ− µ∗)TLµ(t)(x(t), µ(t))] + 2α(t)(x− x∗)Tω(t)
−2α(t)(µ− µ∗)Tψ(t) + 2α2(t)(C1 + C2)

(36)
In the following we assume that (x(t), µ(t)) /∈ Hγ to build

a contradiction and to verify the conclusion of Step 1 with a
indirect method. Recall the definition of Hγ , we have

L(x, µ∗)− L(x∗, µ) ≤ −γ (37)

Since L(x, µ) is concave in x and convex in µ,
Lx(t)(x(t), µ(t)) and Lµ(t)(x(t), µ(t)) are the gradient or
subgradient vectors of L(x, µ) with respect to x and µ
respectively, thus we have

(x− x∗)TLx(t)(x(t), µ(t)) ≤ L(x, µ)− L(x∗, µ) (38)

−(µ− µ∗)TLµ(t)(x(t), µ(t)) ≤ L(x, µ∗)− L(x, µ) (39)

By the summation of the above inequalities (38) and (39),
and with inequality (37), we have

(x−x∗)TLx(t)(x(t), µ(t))−(µ−µ∗)TLµ(t)(x(t), µ(t)) ≤ −γ
(40)

Therefore, combining with (36), it yields that

V (x(t+ 1), µ(t+ 1))
≤ V (x(t), µ(t))− 2α(t)γ + 2α(t)(x− x∗)Tω(t)
−2α(t)(µ− µ∗)Tψ(t) + 2α2(t)(C1 + C2)

(41)

And then,

E[V (x(t+ 1), µ(t+ 1))|Ft]
≤ V (x(t), µ(t))− 2α(t)γ + 2α(t)(x− x∗)Tω(t)
−2α(t)(µ− µ∗)Tψ(t) + 2α2(t)(C1 + C2)
≤ V (x(t), µ(t))− 2α(t)γ + 2α(t)‖(x− x∗)‖‖ω(t)‖
+2α(t)‖(µ∗ − µ)‖‖ψ(t)‖+ 2α2(t)(C1 + C2)
≤ V (x(t), µ(t))− 2α(t)γ +O(α(t)(‖ω(t)‖+ ‖ψ(t)‖)) +O(α2(t))

(42)



10

Next, we need the following proposition from [27, Prop.
4.2, p. 148] to verify the recurrence of Hγ for {(x(t), µ(t))}.

Proposition: (Supermartingale convergence theorem) Let
Yt, Xt, and Zt, t = 0, 1, 2, · · · ,be three sequences of random
variables and let Ft, t = 0, 1, 2, · · · , be sets of random
variables such that Ft ⊂ Ft+1 for all t. Suppose that:

(a) The random variables Yt, Xt, and Zt are nonnegative,
and are functions of the random variables in Ft.
(b) For each t, we have E[Yt+1|Ft] ≤ Yt −Xt + Zt.
(c) There holds

∑∞
t=0 Zt <∞.

Then, we have
∑∞
t=0Xt <∞, and the sequence Yt converges

to a nonnegative random variable Y , with probability 1.
Then by applying condition A5 and the above proposition

to inequality (42), we have
∑
t α(t)γ <∞, which contradicts

the conditions A3. Thus, (x(t), µ(t)) ∈ Hγ for infinitely many
t with probability one, i.e., Hγ is recurrent for {(x(t), µ(t))}.

Step 2: With (36), for any n ≥ t+ 1, it follows

V (x(n), µ(n))

≤ V (x(t), µ(t)) + 2
∑n−1
i=t α(i)[(x(i)− x∗)TLx(i)(x(i), µ(i))

−(µ(i)− µ∗)TLµ(i)(x(i), µ(i))] + 2
∑n−1
i=t α(i)(x(i)− x∗)Tω(i)

−2
∑n−1
i=t α(i)(µ(i)− µ∗)Tψ(i)

+2(C1 + C2)
∑n−1
i=t α

2(i)
(43)

From (33) and (40), for any i ≥ t+ 1, we have that

(x(i)− x∗)TLx(i)(x(i), µ(i))− (µ(i)− µ∗)TLµ(i)(x(i), µ(i))
≤ 0

(44)
Thus, we have

V (x(n), µ(n))

≤ V (x(t), µ(t)) + 2
∑n−1
i=t α(i)(x(i)− x∗)Tω(i)

−2
∑n−1
i=t α(i)(µ(i)− µ∗)Tψ(i)

+(C1 + C2)
∑n−1
i=t α

2(i)

(45)

From conditions A3 and A5, we then have that

lim
t→∞

(C1 + C2)

n−1∑
i=t

α2(i) = 0 (46)

lim
t→∞

n−1∑
i=t

α(i)(x(i)− x∗)T θx(i) = 0 (47)

lim
t→∞

n−1∑
i=t

α(i)(µ(i)− µ∗)Tϕµ(i) = 0 (48)

Combining (46), (47) and (48), it follows that w.p.1, for any
ε > 0, after {(x(t), µ(t))} returns to Hγ for some sufficiently
large t,

2
∑n−1
i=t α(i)(x(i)− x∗)Tω(i)

−2
∑n−1
i=t α(i)(µ(i)− µ∗)Tψ(i)

+(C1 + C2)
∑n−1
i=t α

2(i) ≤ ε
(49)

Therefore, applying the above inequality to (45), we have

V (x(n), µ(n)) ≤ V (x(t), µ(t)) + ε,∀n ≥ t+ 1

Since this holds for arbitrarily small ε > 0, thus
{(x(t), µ(t))} can not move far away from Hγ with arbitrarily
small γ > 0, it follows that (x(t), µ(t)) converges to the
optimal solution (x∗, µ∗) w.p.1
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